

Installation & Service Instructions

Rev. 01 | PN16-01196 | 4/2015

This document does not contain any export-controlled technical data.

Information furnished by Exlar Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Exlar Corporation for its use. Exlar reserves the right to change the design and operation of the equipment described herein and any associated motion products that may appear in this document. Information in this document pertaining to equipment not furnished by Exlar should be confirmed by that equipment manufacturer. Exlar assumes no responsibility for changes to information by other manufacturers or errors in that information or the description of that information. Information in this document is subject to change without notice.

TABLE OF CONTENTS

	About This Manual	3
1:	Introduction	6
	1.1: The Copley ASCII Interface	7
	1.2: Communication Protocol	7
2:	Command Set	8
	2.1: Command Format	9
	2.2: Set Command (s)	10
	2.3: Get Command (g)	11
	2.4: Copy Command (c)	12
	2.5: Reset Drive Command (r)	13
	2.6: Trajectory Generator Command (t)	14
	2.7: Register Read and Write Command (i)	16
	2.8: Clear Encoder Faults Command	17
3:	Operating Modes	. 18
	3.1: Desired State Parameter	19
	3.2: Current Mode	20
	3.3: Velocity Mode	24
	3.4: Position Mode	28
4:	Operation	. 41
	4.1: Setting the Baud Rate	42
	4.2: Setting Limits and Gains	42
	4.3: Monitoring Status	46
	4.4: Reading Run Time Parameters	50
	4.5: Reading Digital Inputs	51
	4.6: Reading/Setting Digital Outputs	52
5:	Quick Reference to the Parameters	. 54
	5.1: Parameters by Function	55
6:	CME 2 ASCII Command Line Tool	. 60
7:	Serial and Multi-Drop Connection	. 62
	7.1: Connecting	63
A :	Error Codes	. 65

About This Manual

Overview and Scope

This manual describes Copley ASCII Interface developed by Copley Controls. This manual was written for the reader who has a basic knowledge of motion control theory and operation, Copley Controls drives, and Copley Controls CME 2 software.

Related Documentation

- CME 2 User Guide
- Camming User Guide
- Parameter Dictionary

Copley Controls software and related information can be found at: http://www.copleycontrols.com/Motion/Products/Software/index.html

Product Warnings

Observe all relevant state, regional, and local safety regulations when installing and using Copley Controls drives. For safety and to assure compliance with documented system data, only Copley Controls should perform repairs to drives.

DANGER: Hazardous voltages.

Exercise caution when installing and adjusting. Failure to heed this warning can cause equipment damage, injury, or death.

DANGER

Risk of electric shock.

Drive high-voltage circuits are connected to DC or AC power. Failure to heed this warning can cause equipment damage, injury, or death.

Using CME 2 can affect or suspend externally controlled operations.

When operating the drive under control of the ASCII Interface, use of CME 2 to change drive parameters can affect operations in progress.

Using CME 2 to initiate motion can cause external program operations to suspend. The operations may restart unexpectedly when the CME 2 move is stopped.

Failure to heed this warning can cause equipment damage, injury, or death.

Revision History

Revision	Date	Comments
00	May 2014	Added info on multi-axis drives
01	March 2015	Fixed description for parameter 0x3A and 0xA9, also minor typo/text edits.

1: INTRODUCTION

1.1: The Copley ASCII Interface

The Copley ASCII Interface is a set of commands that can be used to control and monitor Copley Controls drives over an RS-232 serial connection.

The ASCII Interface can be used to:

- Read and write the drive's parameters
- Control the trajectory generator
- Read and write CVM registers.

1.2: Communication Protocol

Copley drives use the "speak when spoken to" protocol. This means that the drive will never initiate communications, but it will respond to commands with a data packet, an error code, or acknowledgement (except for a reset command).

The baud rate of the drive will always be set to 9600 on power up or after a reset. Copley drives are designed to identify a break condition on the serial line and synchronize its communication interface based on it. A serial break command is normally an illegal condition in which the system initiating the break command holds its transmit line low for longer than a single byte of serial data. If such a condition is detected by the drive, it will flush any pending input data, reset its baud rate to 9600, and wait for a new command to be received on its serial port. The drive will never initiate a break command itself.

Use the following settings for the serial port communications:

Baud Rate	9,600 to 115,200 (Defaults to 9,600 on power up or reset.)
Data Format	N, 8, 1
Flow Control	None

2: COMMAND SET

2.1: Command Format

The general syntax of a Copley ASCII message is:

[node ID][<.>axis letter] [command code] [command parameters] <CR>

The specific syntax for each command is described in the remaining sections of this chapter.

[node ID]

(Optional), the CANopen node ID of a drive on a multi-drop network (See Multi-Drop Network Connections). The node ID is followed by a space, unless an axis letter is specified. The valid range is 1-127.

[<.>axis letter]

Optional, the axis letter for multi-axis drives (BE2, SP4, etc.). Axes are specified by a single letter and must be preceded by a period. Valid axis letters start at "A" and continue sequentially. For example, the SP4 is a four axis drive with valid axis letters of A, B, C, D.

[command code]

The command code is a single-letter code for the command.

Code	Command	Description	
S	Set	Set a value of a parameter in ram or flash.	
g	Get	Read the value of a parameter in ram or flash.	
С	Сору	Copy the value of a parameter from ram to flash or flash to ram.	
r	Reset	Reset the drive.	
t	Trajectory	Trajectory generator command.	
i	Register	Read or write the value of a CVM program register.	

[command specific parameters]

Command specific parameters are used to provide additional data for a command. If more than one parameter is required, they should be separated by spaces. The remaining sections of this chapter describe the parameters for each command code.

<CR>

A carriage return is used to indicate the end of the command to the drive.

2.2: Set Command (s)

The **s** command is used to set the value of a drive parameter in RAM or flash.

Syntax

[node ID][<.>axis letter] s [memory bank][parameter ID] [value]<CR>

Command Specific Parameters

[memory bank]	Identifies which memory bank to set the parameter in.		
	f = flash memory		
	r = RAM memory		
[parameter ID]	Identifies the parameter to set. This value can be decimal or hexadecimal.		
[value]	The new value(s) to be set in the parameter. Value can be sent in integeror hexadecimal format. If multiple values are required, they are separated by spaces.		

The drive responds to the **s** command with:

ok<CR> if the command is accepted.

e <error #><CR> if the command was not accepted. See Error Codes.

Command	Response	Comment
s r0x30 1200	ok	Set parameter 0x30 (position loop proportional gain) to 1200 in RAM. The "ok" response indicates that the command executed successfully.
s f0x30 1200	ok	Set parameter 0x30 (position loop proportional gain) to 1200 in flash. The "ok" response indicates that the command executed successfully.
3 s f0x30 1200	ok	Set parameter 0x30 (position loop proportional gain) to 1200 in flash for the drive with CAN node ID of 3. The "ok" response indicates that the command executed successfully.
.b s f0x30 1200	ok	Set parameter 0x30 (position loop proportional gain) to 1200 in flash on axis B. The "ok" response indicates that the command executed successfully.
s r 0x30 1000	e 33	Attempted to set 0x30 to 1200 in RAM. Error 33 (ASCII command parsing error) was returned. Note the extra space between the bank and the parameter ID.

2.3: Get Command (g)

The **g** command is used to read the value of a drive parameter from RAM or flash.

Syntax

[node ID][<.>axis letter] g [memory bank][parameter ID][optional <x>]<CR>

Command Specific Parameters

[memory bank]	Identifies which memory bank to read the parameter from.		
f = flash memory			
	r = RAM memory		
[parameter ID]	Identifies the parameter to read. This value can be decimal or hexadecimal.		
<x></x>	(Optional), instructs the drive to return the value in hexadecimal format. This option is not available on Feature set A or Feature Set B drives.		

The drive responds to the Get command with:

v [value]<CR> where value equals the contents of the parameter. If the parameter contains multiple values, they will separated by spaces.

e <error #><CR> if the command was not accepted. See Error Codes.

Command	Response	Comment
g r0x30	v 1200	Read the value of parameter 0x30 (position loop proportional gain) from RAM. Example shows a value of 1200 returned.
3 g r0x30	v 1200	Read the value of parameter 0x30 (position loop proportional gain) from RAM for the drive with CAN node ID of 3. Example shows a value of 1200 returned.
.b g r0x30	v 1200	Read the value of parameter 0x30 (position loop proportional gain) from RAM on axis B. Example shows a value of 1200 returned.
g r0xa0x	v 0x4000f800	Read the value of parameter 0xa0 (amplifier event status) and return the value in hexadecimal format.
g f0x17	e 15	Attempted to read parameter 0x17 (actual motor position) from flash. Error 15 (Parameter doesn't exist on requested page) was returned. Note that actual motor position is stored in RAM only.

2.4: Copy Command (c)

The **c** command is used to copy the value of a parameter from one memory bank to another (RAM to flash or flash to RAM).

Syntax

[node ID][<.>axis letter] c [memory bank][parameter ID]<CR>

Command Specific Parameters

[memory bank] Identifies which memory bank to set the parameter in.			
	f = copy from flash to RAM		
	r = copy from RAM to flash		
[parameter ID]	Identifies the parameter to read. This value can be decimal or hexadecimal.		

The drive responds to the **c** command with:

ok<CR> if the command is accepted.

e <error #><CR> if the command was not accepted. See Error Codes.

Command	Response	Comment
c r0x30	ok	Copy the value of 0x30 from RAM to flash. The "ok" response indicates that the command executed successfully.
.b c r0x30	ok	Copy the value of 0x30 from RAM to flash for axis B. The "ok" response indicates that the command executed successfully.
3 c r0x30	ok	Copy the value of 0x30 from RAM to flash for the drive with CAN node ID of 3. The "ok" response indicates that the command executed successfully.
c f0x30	ok	Copy the value of 0x30 from flash to RAM. The "ok" response indicates that the command executed successfully.

2.5: Reset Drive Command (r)

The **r** command is used to reset the drive. The command requires no additional parameters. The drive baud rate is set to 9600 when the drive restarts. The drive does not respond to this message.

NOTE: if a reset command is issued to a drive on a multi-drop network, error code 32, "CAN Network communications failure," will be received. This is because the drive reset before responding to the gateway drive. In this case, the error can be ignored.

Syntax

[optional node ID] r<CR>

Notes

The axis letter has no effect with this command because the reset command applies to all axes of a multi-axis drive.

Command	Response	Comment
r	none	Drive is reset.
3 r	none	The drive with CAN node ID of 3 is reset.

2.6: Trajectory Generator Command (t)

The **t** command controls the trajectory generator.

Syntax

1 The original syntax for the t command is:

[node ID][<.>axis letter] t [command code]<CR>

2 For Feature Set C and D with a firmware version of at least 3.26 and Feature Set E drives with a firmware version of at least 1.44, the axis letter is not needed because the axis can be specified in the command code. If the axis is supplied in addition to setting the axis bits in the command code, the axis letter will be OR'd with the bits set in the command code. This is allowed for backward compatibility reasons.

[node ID] t [command code]<CR>

[command code]	mmand code] Trajectory command information, bit-mapped as follows:			
	Bit(s)	ption		
	0-3	Sub-command		
		Value	Meaning	
		0	Abort the move in progress.	
1 Initiate		1	Initiate or update a move.	
		2	Initiate home sequence	
	4-11	Reserved and should be set to zero		
	12*	If set apply command to axis A		
	13*	If set apply command to axis B		
	14*	If set apply command to axis C		
	15*	If set apply command to axis D		
* NOTE: The axis bits are only available on Feature Set C and D with a firmware version of at least 3 26 and Feature Set E drives with a firmware version of at least 1 44				

Command Specific Parameters

The drive responds to the **t** command with:

ok<CR> if the command is accepted. An "ok" response only indicates the command was accepted by the drive. Monitor the trajectory status register to verify that motion has actually been initiated.

e <error #><CR> if the command was not accepted. See Error Codes

Command	Response	Comment
t 1	ok	Initiate a move.
t 0x5002	ok	Initiate a home sequence on axis A and C
t2	e 33	Attempted to initiate a homing sequence. Error 33 (ASCII command parsing error) was returned. Note there is no space between the command and sub-command.

2.7: Register Read and Write Command (i)

The i command is used to read and write one of the CVM program's 32 registers.

Write Syntax

[node ID] i <r#> [value]<CR>

Command Specific Parameters

<r#></r#>	Identifies which register to access. The valid range is 0-31.		
[value]	If included, the new value to be written to the register. The value can be in decimal or hexadecimal format.		

Read Syntax

[node ID][<.>axis letter] i <r#><CR>

Command Specific Parameters

<r#> Identifies which register to access. The valid range is 0-31.</r#>	6 6	<r#></r#>	Identifies which register to access. The valid range is 0-31.
---	-----	-----------	---

The drive responds to the i command with:

- **ok<CR>** if the command is accepted and the value is written to the register.
- **r [value]<CR>** where value equals the contents of the register that was read.
- e <error #><CR> if the command was not accepted. See Error Codes

Notes

All axes on a multi-axis drive share a single set of CVM registers. Therefore, the axis letter is not used for this command.

Command	Response	
i r0 15	ok	Write the value "15" to register 0.
i rO	r 15	Read the value of register 0. Example displays a returned value equal to 15.
8 i r0	r 35	Read the value of register 0 on drive with CAN node ID of 8. Example displays a returned value equal to 35.

2.8: Clear Encoder Faults Command

This command will clear the faults being reported by the encoder. When received by the drive, the drive will attept to send the clear faults command to the encoder.

Syntax

For motor encoders:

enc clear

For load encoders:

Idenc clear

Notes

The encoder must be connected to the drive for this command to work.

Command	Response	
enc clear	ok	Drive attempts to clear the faults on the motor encoder
ldenc clear	ok	Drive attempts to clear the faults on the load encoder

3: OPERATING MODES

3.1: Desired State Parameter

The desired state parameter (0x24) defines the drive's operating mode and input source control. Mode-specific values are mentioned in the remaining sections of this chapter.

Value	State
0	Disabled. NOTE: If the desired sate is saved to flash as 0, then CME 2 assumes the drive has not been programmed, and when CME connects to the drive, the Basic Setup screen will be displayed.
1	The current loop is driven by the programmed current value.
2	The current loop is driven by the analog command input.
3	The current loop is driven by the PWM & direction input pins.
4	The current loop is driven by the internal function generator.
5	The current loop is driven by UV command.
11	The velocity loop is driven by the programmed velocity value.
12	The velocity loop is driven by the analog command input.
13	The velocity loop is driven by the PWM & direction input pins.
14	The velocity loop is driven by the internal function generator.
21	Servo mode, the position loop is driven by the trajectory generator.
22	Servo mode, the position loop is driven by the analog command input.
23	Servo mode, the position loop is driven by the digital inputs (pulse & direction, master encoder, etc.).
24	Servo mode, the position loop is driven by the internal function generator.
25	Servo mode, the position loop is driven by the cam tables.
30	Servo mode, the drive is controlled by the CANopen or EtherCAT interface.
31	Microstepping mode, the position loop is driven by the trajectory generator.
32	Microstepping mode, the position loop is driven by the analog command input.
33	Microstepping mode, the position loop is driven by the digital inputs (pulse & direction, master encoder, etc.).
34	Microstepping mode, the position loop is driven by the internal function generator.
35	Microstepping mode, the position loop is driven by the cam tables.
36	Microstepping mode, the velocity loop is driven by the analog command input.
40	Microstepping mode, the drive is controlled by the CANopen or EtherCAT interface.
42	Diagnostic use only. The current loop is driven by the programmed current value, and the phase angle is micro-stepped.

3.2: Current Mode

Programmed Current Mode

The Programmed Current mode sets the output of the drive at a programmed current level. When the drive is enabled in this mode, or when the programmed current level is changed, the output current ramps to the new level at the programmed rate.

Parameters

Parameter ID	Bank	Description	
0x24	RF	Desired state: Programmed Current mode (1)	
0x02	RF	Programmed current value. Units: 0.01 A.	
0x6a	RF	Current ramp limit. Units: mA/second.	
		results in a step change.	

NOTE: When changing both the level and the ramp parameters while the drive is enabled, change the ramp rate first.

Example

Enable the drive in Programmed Current Mode. Ramp the output current up to 2 A in 0.5 seconds. The controller monitors the output current, and after it reaches 2 A the current is ramped down to 1 A in 2 seconds.

Command	Response	Comment
s r0x6a 4000	ok	Set ramp rate to 4 A/second.
s r0x02 200	ok	Set the output level to 2 A.
s r0x24 1	ok	Enable the drive in Programmed Current Mode. Output current will start increasing at a rate of 4 A/second.
The controller us	es the followir	ng command to monitor the output current.
g r0x0c	v 150	Reads actual current output from the drive. Example displays a returned value equal to 1.50 A.
After the output oparameters.	urrent reache	s 2 A, the controller sends the new ramp and level
s r0x6a 500	ok	Set new ramp rate of 0.5 A/second.
s r0x02 100	ok	Change the output level to 1 A. Output current will start decreasing at a rate of 0.5 A/second.
The controller dis	ables the driv	

The controller disables the drive.

S	r0x24 (0 ol	K	Disable	the c	lrive.

Analog Current Mode

In Analog Current Mode, the current output of the drive is proportional to the analog reference input command signal.

Parameters

Parameter ID	Bank	Description	
0x24	RF	esired state. Analog Current Mode (2).	
0x19	RF	Analog input scaling factor. Amount of current to be commanded when 10 volts is applied to the analog input. Units: 0.01 A.	
0x26	RF	Analog input dead band. Units: mV.	
0x1a	RF	Analog input offset. Units: mV.	

NOTE: Parameters 0x19, 0x26 and 0x1a are used in Analog Current, Velocity and Position modes. Verify that these parameters are set correctly before switching between these modes of operation.

Example

The controller sets the scaling, enables the drive in Analog Current Mode, monitors the current output, and changes the scaling to a new value.

Command	Response	Comment
s r0x19 1000	ok	Set scaling factor to 10V = 10A.
s r0x24 2	ok	Set drive to Analog Current Mode.
The controller use	s the followin	g command to monitor the output current.
g r0x0c	v 525	Reads actual current output from the drive. Example displays a returned value equal to 5.25 A.
The controller cha	nges the sca	ling factor
s r0x19 100	ok	Set scaling factor to 10V = 1A.
The controller disa	ables the drive	e.
s r0x24 0	ok	Disable the drive.

PWM Current Mode

In the PWM Current Mode, the current output of the drive is proportional to the duty cycle of the input command signal. In most applications the command signal configuration is set using CME 2 and not changed during operation.

Parameters

Parameter ID	Bank	Description	
0x24	RF	esired state: PWM Current Mode (3).	
0xa9	RF	Digital input scaling factor. Amount of current commanded at 100 percent duty cycle. Units: 0.01 A.	
0xa8	RF	Digital input command configuration normally set using the CME 2 PWM Command screen. See table below for definition of the values.	

NOTE: Parameters 0xa9 and 0xa8 are used in PWM Current and Velocity modes. Verify that these parameters are set correctly before switching between these modes of operation.

Example

The controller sets the scaling, enables the drive in PWM Current Mode, and monitors commanded and actual current.

Command		Response	Comment		
s	r0xa9 1000	ok	Set scaling factor to 10A.		
s	r0x24 3	ok	Enable the drive in PWM Current Mode.		
The controller uses the following commands to monitor the commanded and output current .					
g	r0x15	v 500	Reads commanded current from the drive. Example displays a returned value equal to 5 A.		
g	r0x0c	v 495	Reads actual current output from the drive. Example displays a returned value equal to 4.95 A.		
T٢	The controller disables the drive.				
s	r0x24 0	ok	Disable the drive.		

PWM Current Mode Command Signal Configuration

If required during operation, the PWM command signal configuration can be changed by setting the value of parameter 0xa8 as shown below.

PWM Input Type	Invert PWM Input	Invert Sign Input	Allow 100% Output	Value
50%	No		No	0x00
50%	No		Yes	0x08
50%	Yes		No	0x02
50%	Yes		Yes	0x0a
100%	No	No	No	0x01
100%	No	No	Yes	0x09
100%	No	Yes	No	0x05
100%	No	Yes	Yes	0x0d
100%	Yes	No	No	0x03
100%	Yes	No	Yes	0x0b
100%	Yes	Yes	No	0x07

3.3: Velocity Mode

Programmed Velocity Mode

The Programmed Velocity Mode sets the output of the drive to a programmed motor velocity. When the drive is enabled in this mode, or when the programmed velocity is changed, the motor velocity will ramp to the new level at the programmed rate.

Parameters

Parameter ID	Bank	Description
0x24	RF	Desired state: Programmed Velocity Mode (11).
0x2f	R F	Programmed velocity command. Units: 0.1 counts/second.
0x36	RF	Velocity acceleration limit. Units: 1000 counts/second ²
0x37	RF	Velocity deceleration limit. Units: 1000 counts/second ²
0x39	RF	Fast stop ramp. Units: 1000 counts/second ²

Example

The controller sets the velocity parameters, enables the drive in Programmed Velocity Mode, monitors the actual motor velocity, and then changes the velocity.

Command R	Response	Comment				
s r0x36 2 o	ok	Set acceleration limit to 2000 counts/second ² .				
s r0x37 4 o	ok	Set deceleration limit to 4000 counts/second ² .				
s r0x2f 10000 o	ok	Set the programmed velocity to 1000 counts/second.				
s r0x24 11 o	ok	Enable the drive in Programmed Velocity Mode.				
The controller uses the	e following co	ommands to monitor the motor velocity.				
g r0x18 v	/ 10010	Reads actual velocity from the drive. Example displays a returned value equal to 1001 counts/second.				
The controller sets a ne	ew velocity to	o 500 counts/second.				
s r0x2f 5000 o	ok	Set the programmed velocity to 500 counts/second. Motor will decelerate at 4000 counts/second ² to 500 counts/second.				
The controller disables	The controller disables the drive.					
s r0x24 0 o	ok	Disable the drive.				

Analog Velocity Mode

In the Analog Velocity Mode, the motor velocity is proportional to the analog reference input command signal.

Parameters

Parameter ID	Bank	Description	
0x24	RF	Desired state: Analog Velocity Mode (12).	
0x19	RF	Analog input scaling factor. Velocity commanded per 10 volts of input. Units: 0.1 counts/second	
0x26	RF	Analog input dead band. Units: mV.	
0x1a	RF	Analog input offset. Units: mV.	
0x36	RF	Velocity acceleration limit. Units: 1000 counts/second ²	
0x37	RF	Velocity deceleration limit. Units: 1000 counts/second ²	
0x39	RF	Fast stop ramp. Units: 1000 counts/second ²	

NOTE: Parameters 0x19, 0x26 and 0x1a are used in Analog Current, Velocity and Position modes. Verify that these parameters are set correctly before switching between these modes of operation.

Example

The controller sets the scaling, enables the drive in Analog Velocity Mode, monitors the actual motor velocity, and changes the scaling.

Command Response		Comment		
s r0x19 10000	ok	Set scaling factor to 1000 counts/second.		
s r0x24 12	ok	Enable the drive in Analog Velocity Mode.		
The controller uses	the following c	command to monitor the actual motor velocity.		
g r0x18	v 5000	Reads actual velocity from the drive. Example displays a returned value equal to 500 counts/second.		
The controller chang	g factor.			
s r0x19 7000	ok	Set scaling factor to 700 counts/second.		
The controller disables the drive.				
s r0x24 0	ok	Disable the drive.		

PWM Velocity Mode

In the PWM Velocity Mode, the motor velocity is proportional to the duty cycle of the input command signal. In most applications the command signal configuration is set using CME 2 and not changed during operation.

Parameters

Parameter ID	Bank	Description	
0x24	RF	Desired state: PWM Velocity Mode (13).	
0xa9	RF	Scaling Factor. Velocity command at 100 percent duty cycle. Units: 0.1 counts/second.	
0x36	RF	Velocity acceleration limit. Units: 1000 counts/second ²	
0x37	RF	Velocity deceleration limit. Units: 1000 counts/second ²	
0x39	RF	Fast stop ramp. Units: 1000 counts/second ²	
0xa8	RF	Digital input command configuration. This is normally set using the CME 2 PWM Command screen. See table below for the definition of the values.	

NOTE: Parameters 0xa9 and 0xa8 are used in PWM Current and Velocity modes. Verify that these parameters are set correctly before switching between these modes of operation.

Example

The controller sets the PWM scaling, enables the drive in PWM Velocity Mode, and monitors the commanded and actual velocity.

С	ommand	Response	Comment
S	r0xa9 800000	ok	Set scaling factor to 80000 counts/second at 100%.
s	r0x24 13	ok	Enable the drive in PWM Velocity Mode.
g	r0x2c	v 49995	Reads commanded velocity from the drive. Example displays a returned value equal to 4999.5 counts/second.
g	r0x18	v 49991	Reads actual velocity from the drive. Example displays a returned value equal to 4999.1 counts/second.
s	r0x24 0	ok	Disable the drive.

PWM Velocity Mode Command Signal Configuration

If required during operation, the PWM command signal configuration can be changed by setting the value of parameter 0xa8 as shown below.

PWM Input Type	Invert PWM Input	Invert Sign Input	Allow 100% Output	Value
50%	No		No	0x00
50%	No		Yes	0x08
50%	Yes		No	0x02
50%	Yes		Yes	0x0a
100%	No	No	No	0x01
100%	No	No	Yes	0x09
100%	No	Yes	No	0x05
100%	No	Yes	Yes	0x0d
100%	Yes	No	No	0x03
100%	Yes	No	Yes	0x0b
100%	Yes	Yes	No	0x07

3.4: Position Mode

Updating Trajectory Parameters in Position Modes

When the drive enters a position mode, the trajectory parameters (velocity, acceleration and deceleration) are copied into the trajectory generator. To change any of them after the drive is in a position mode, send the new value to the appropriate parameter and then send a *t* 1 command to initiate a trajectory update.

Programmed Position Mode

In the Programmed Position Mode, the axis moves to target positions sent to the drive over the serial interface. The target positions can be absolute or relative from the current position. The motion profile used can be set to trapezoidal or S-curve.

To initiate a move, first set the appropriate parameters and then send the trajectory command t 1 to start the move. When using the trapezoidal profile, the move parameters can be changed during the move. Again, first set the appropriate parameters and then send another t 1 command. When the t 1 command is received, the target position, absolute / relative, velocity, acceleration and deceleration rates will be updated. In this manner, the move in progress can be changed. The S-curve profile cannot be updated in this manner.

To abort a move in progress, send a *t* 0 command. This will stop the move in progress using the abort deceleration rate. The drive will remain enabled.

A special velocity mode can be used to move the axis using the velocity, acceleration and deceleration of the trapezoidal profile but with no specific target position. Direction of motion is set by entering a "1" or "-1" into the position command parameter. Once started, the move will continue until the velocity parameter is set to zero and a t 1 command is sent or a t 0 abort command is sent.

Parameter ID	Bank	Description	
0x24	RF	Desired state:	
		21 = Programmed Position Mode, Servo 31 = Programmed Position Mode, Stepper	
0xc8	RF	Profile type:	
		0 = Absolute move, trapezoidal profile. 1 = Absolute move, S-curve profile	
		256 = Relative move, trapezoidal profile. 257 = Relative move, S-curve profile.	
		2 = Velocity move.	
0xca	RF	Position command. Units: counts.	
		Relative move = the distance of the move. Absolute move = the target position of the move. Velocity move = 1 for positive direction, -1 for negative direction.	

Parameters

0xcb	RF	Maximum velocity. Units: 0.1 counts/second.
0xcc	RF	Maximum acceleration rate. Units: 10 counts/second ² .
0xcd	RF	Maximum deceleration rate. Units: 10 counts/second ² .
0xce	RF	Maximum jerk rate. Units: 100 counts/ second ³ .
0xcf	RF	Abort deceleration rate. Units: 10 counts/second ² .

NOTES: 1) Maximum jerk rate is not used in the trapezoidal profile. 2) In the S-curve profile, the maximum deceleration rate is note used. The maximum acceleration rate is used for both acceleration and deceleration.

Example

The controller sets profile parameters, executes an absolute trapezoidal move to position 40,000 counts, monitors for move completion, and then executes a relative move of 10,000 counts using the same profile parameters.

Comman	d	Response	Comment
s r0xc8	0	ok	Set the trajectory generator to absolute move, trapezoidal profile.
s r0xca	40000	ok	Set the position command to 40000 counts.
s r0xcb	70000	ok	Set maximum velocity to 7000 counts/second.
s r0xcc	200000	ok	Set maximum acceleration to 2000000 counts/second ² .
s r0xcd	200000	ok	Set maximum deceleration to 2000000 counts/second ² .
s r0x24	21	ok	Enable the drive in Programmed Position (Trajectory Generator) Mode.
The control	oller verifies	actual axis positi	on before starting move.
g r0x32		v 0	Read actual position. Example displays an actual position of 0.
t 1		ok	Execute the move.
The contro completed	oller monito 1.	rs the event statu	s register to determine when the move has been
g r0xa0		v 134217728	The controller monitors bit 27 of the event status register to determine when the move is complete. Example displays a status register value of 134217728. When this is decoded, it shows that bit 27 is set meaning the axis is in motion.
A C			

After the controller determines that motion has stopped, it checks the trajectory status register to see if the move was aborted for any reason.

g r0xc9	v 4096	The controller checks bit 14 of the trajectory status
		displays a status register value of 4096. When this is decoded, it shows that bit 14 is not set meaning the
		move was not aborted.

The controller sets the trajectory configuration and commanded position parameters to their new values and executes the new move.

Operating Modes

ASCII Programmer's Guide

s r0xc8 256	ok	Set the trajectory generator to relative move, trapezoidal profile.		
s r0xca 10000	ok	Set the position command to 10000 counts.		
t 1	ok	Execute the move.		
The controller aborts the move.				
t 0	ok	Motion stops and the drive is left enabled		
The controller disables the drive.				
s r0x24 0	ok	Disable the drive.		

Analog Position Mode

In the Analog Position Mode, the axis position is commanded by the analog reference input command signal.

The analog position command operates as a relative motion command. When the drive is enabled the voltage on the analog input is read. Then any change in the command voltage will move the axis a relative distance, equal to the change in voltage, from its position when enabled. To use the analog position command as an absolute position command, the drive should be homed every time it is enabled.

Parameter ID	Bank	Description
0x24	RF	Desired state: Analog Position Mode (22).
0x19	RF	Analog input scaling factor. Commanded position per 10 volts of input. Units: counts.
0x26	RF	Dead band. Units: mV.
0x1a	RF	Analog input offset. Set to 0 when in this mode of operation.
0xcb	RF	Maximum velocity. Units: 0.1 counts/second.
0xcc	RF	Maximum acceleration rate. Units: 10 counts/second ² .
0xcd	RF	Maximum deceleration rate. Units: 10 counts/second ² .
0xcf	RF	Abort deceleration rate. Units: 10 counts/second ² .

Parameters

NOTES: 1) Parameters 0x19, 0x26 and 0x1a are used in Analog Current, Velocity and Position modes. Verify that these parameters are set correctly before switching between these modes of operation. 2) To invert the direction of motion with respect to the polarity of the command voltage, set the scaling factor as a negative value.

Example

The controller sets the move parameters, homes the axis and then places the amp in the Analog Position Mode. The controller monitors actual position. The controller then changes the maximum velocity and scaling factor.

Command R	lesponse	Comment
s r0x19 4000 ol	k	Set analog scaling to 4000 counts per 10V.
s r0xcb 70000 ol	k	Set velocity to 7000 counts/second
s r0xcc 20000 ol	k	Set acceleration to 200000 counts/second ²
s r0xcd 20000 ol	k	Set deceleration to 200000 counts/second ²
s r0x24 21 ol	k	Drive set in Programmed Position Mode required for homing.
t 2 ol	k	Execute homing. Assumes all homing parameters have been previously set.

The controller monitors the trajectory status register to determine when the axis has been homed.

g r0xc9 v 8192	Controller checks bit 12 of the trajectory status register to determine if the axis was homed successfully. Example displays a status register value of 8192. Decoded, this value shows that bit 12 is not set, meaning the axis has not finished homing.
----------------	---

After a successful homing, the controller changes the drive's operating mode.

- s r0x24 22 ok Drive set in Analog Position Mode
- t 1 ok This command will guarantee all new move parameters are in effect.

The controller monitors actual motor position.

g r0x32 v 2012 Reads actual motor position from the drive. Example displays a returned value equal to 2012 counts.

The controller changes velocity and scaling parameters

S	r0xcb 20000	ok	Set velocity to 2000 counts/second
---	-------------	----	------------------------------------

- s r0x19 1000 ok Set analog scaling to 1000 counts / 10V input.
- t 1 ok This command required for new velocity to take effect.

The controller disables the drive.

s r0x24 0 ok Disable the drive.

Pulse and Direction Mode

In the Pulse and Direction Position Mode, the axis position is commanded by pulses applied to one of the drives digital inputs. The direction of the commanded move is determined by the logic level of a second digital input.

The scaling factor sets the ratio of position command, in counts, for each input pulse. This ratio is stored in parameter 0xa9 as two 16 bit words. The first word stores the numerator or number of position counts. The second stores the denominator or the number of input pulses. Example: To set a ratio of 10 counts of position change for every input pulse. The ration would be 10/1. To make sending the data easier, it should be converted to hex word format so the ratio would now be 0x000a / 0x0001. The two words can now simply be combined and sent to the drive by sending the command *s* r0xa9 0x000a0001.

To invert the direction, the numerator should be set to a negative value.

Example: Changing direction of the previous example would require a ratio of -10/1. Using the 2's complement method, -10 is represented as 0xfff6 hex. The ratio in hex would now be 0xfff6 / 0x001. Combining these words, the command to be sent would be *s r0xa9 0xfff60001*.

Parameter ID	Bank	Description
0x24	RF	Desired state:
		23 = Digital Input Position Mode, Servo 33 = Digital Input Position Mode, Stepper
0xa8	RF	Digital Command Configuration (Pulse and Direction)
		0 = Increment position on rising edge
		4096 = Increment position on falling edge
0xa9	RF	Scaling factor, Output counts/Input pulses.
0xcb	RF	Maximum velocity. Units: 0.1 counts/second.
0xcc	RF	Maximum acceleration rate. Units: 10 counts/second ² .
0xcd	RF	Maximum deceleration rate. Units: 10 counts/second ² .
0xcf	RF	Abort deceleration rate. Units: 10 counts/second ² .

Parameters

Example

The controller sets the move parameters, places the amp in the Pulse and Direction Position Mode, monitors commanded and actual position, and then changes the scaling factor.

С	ommand	Response	Comment		
S	r0xa8 0	ok	Configure the digital inputs to pulse and direction with the position incrementing on the rising edge of the input pulse.		
S	r0xa9 0x00020002	1 ok	Set scaling factor to 2 output counts per input pulse.		
s	r0xcb 70000	ok	Set velocity to 7000 counts/second.		
s	r0xcc 20000	ok	Set acceleration to 200000 counts/second ² .		
s	r0xcd 20000	ok	Set deceleration to 200000 counts/second ² .		
s	r0x24 23	ok	Enable the drive in Digital Input Position Mode.		
Tł	ne controller monitors	commanded and	actual motor position.		
g	r0x3d	v 4000	Reads commanded position from the drive. Example displays a returned value equal to 4000 counts.		
g	r0x32	v 2012	Reads actual motor position from the drive. Example displays a returned value equal to 2012 counts.		
T٢	The controller changes the scaling parameter.				
S	r0xa9 0x00010003	1 ok	Set scaling factor to 1 output count per input pulse.		
T٢	The controller disables the drive.				
s	r0x24 0	ok	Disable the drive.		

Pulse Up/Down Mode

In the Pulse Up/Down Position Mode, the axis position is commanded by pulses applied to the drives digital inputs. The direction of the commanded move is determined by which of the digital inputs the pulses are applied to.

The scaling factor sets the ratio of position command, in counts, for each input pulse. It is stored in parameter 0xa9 as two 16 bit words. The first word stores the numerator or number of position counts. The second stores the denominator or the number of input pulses.

Example: To set a ratio of 10 counts of position change for every input pulse.

The ratio would be 10/1. To make sending the data easier, it should be converted to hex word format so the ratio would now be 0x000a / 0x0001. The two words can now simply be combined and sent to the drive by sending the command s r0xa9 0x000a0001.

To invert the direction, the numerator should be set to a negative value.

Example: Changing direction of the previous example would require a ratio of -10/1. Using the 2's complement method, -10 is represented as 0xfff6 in hex format. The ratio in hex format would now be 0xfff6 / 0x001. Combining these words, the command to be sent would be s r0xa9 0xfff60001.

Parameter ID	Bank	Description
0x24	RF	Desired state:
		23 = Digital Input Position Mode, Servo. 33 = Digital Input Position Mode, Stepper.
0xa8	RF	Digital Command Configuration (Pulse Up/Down Mode):
		256 = Increment position on rising edge.4352 = Increment position on falling edge.
0xa9	RF	Scaling factor, Output counts/Input pulses.
0xcb	RF	Maximum velocity. Units: 0.1 counts/second.
0xcc	RF	Maximum acceleration rate. Units: 10 counts/second ² .
0xcd	RF	Maximum deceleration rate. Units: 10 counts/second ² .
0xcf	RF	Abort deceleration rate. Units: 10 counts/second ² .

Example

The controller sets the move parameters and then places the amp in the Pulse Up/Down Position Mode, monitors commanded and actual position, and then changes the scaling factor.

Command	Response	Comment		
s r0xa8 256	ok	Configure the digital inputs to pulse up/down with the position incrementing on the rising edge of the input pulse.		
s r0xa9 0x000f0	001 ok	Set scaling factor to 15 output counts per input pulse.		
s r0xcb 70000	ok	Set velocity to 7000 counts/second.		
s r0xcc 20000	ok	Set acceleration to 200000 counts/second ² .		
s r0xcd 20000	ok	Set deceleration to 200000 counts/second ² .		
s r0x24 23	ok	Enable the drive in Digital Input Position Mode.		
The controller monit	ors commanded an	d actual motor position.		
g r0x3d	v 4000	Reads commanded position from the drive. Example displays a returned value equal to 4000 counts.		
g r0x32	v 2012	Reads actual motor position from the drive. Example displays a returned value equal to 2012 counts.		
The controller changes the scaling parameter.				
s r0xa9 0x00010	001 ok	Set scaling factor to 1 output count per input pulse.		
The controller disables the drive.				
s r0x24 0	ok	Disable the drive.		

Quadrature Mode

In the Quadrature Position Mode, the axis position is commanded by a master encoder with its A and B channels applied to the drive's digital inputs.

The scaling factor sets the ratio of position command, in counts, for each count of the master encoder. The scaling factor is stored in parameter 0xa9 as two 16 bit words. Word 1 stores the numerator or number of position counts. Word 2 stores the denominator or the number of input counts.

Example: To set a ratio of 10 counts of position change for every input count, the ratio would be 10/1. To make sending the data easier, the ratio should be converted to its hex equivalent (0x000a/0x0001). The two words can now be combined and sent to the drive by sending the command s r0xa9 0x000a0001.

To invert the direction, the numerator should be set to a negative value.

Example: Changing direction of the previous example would require a ratio of -10/1. Using the 2's complement method, -10 is represented as 0xfff6 in hex format. The ratio in hex format would now be 0xfff6/0x001. Combining these words, the command to be sent would be *s r0xa9 0xfff60001*.

Parameter ID	Bank	Description
0x24	RF	Desired state:
		23 = Digital Input Position Mode, Servo. 33 = Digital Input Position Mode, Stepper.
0xa8	RF	Digital Command Configuration:
		512 = Quadrature Mode.
0xa9	RF	Scaling factor, Output counts/Input pulses.
0xcb	RF	Maximum velocity. Units: 0.1 counts/second.
Охсс	RF	Maximum acceleration rate. Units: 10 counts/second ² .
0xcd	RF	Maximum deceleration rate. Units: 10 counts/second ² .
Oxcf	RF	Abort deceleration rate. Units: 10 counts/second ² .

Parameters

Example

The controller sets the move parameters, enables the drive in the Quadrature Position Mode, and monitors commanded and actual position.

Command		Response	Comment	
s	r0xa8	512	ok	Configure the digital inputs to quadrature position mode.
S	r0xa9	0x00010001	ok	Set scaling factor to 1 output counts per input pulse.
s	r0xcb	70000	ok	Set velocity to 7000 counts/second
s	r0xcc	20000	ok	Set acceleration to 200000 counts/second ²

Operating Modes

S	r0xcd	20000	ok	Set deceleration to 200000 counts/second ²
S	r0x24	23	ok	Enable the drive in Digital Input Position Mode.
ΤI	ne contro	oller monitors con	nmanded and	actual motor position.
g	r0x3d		v 4000	Reads commanded position from the drive. Example displays a returned value equal to 4000 counts.
g	r0x32		v 2012	Reads actual motor position from the drive. Example displays a returned value equal to 2012 counts.
ΤI	ne contro	oller disables the	drive.	
s	r0x24	0	ok	Disable the drive.

Homing Mode

Homing sequences can be performed using the *t* command when the drive is in Programmed Position Mode (servo or stepper). In most applications the homing sequence is configured using CME 2 and not changed during operation.

Parameters

Parameter ID	Bank	Description
0x24	RF	Desired state:
		21 = Programmed Position Mode, Servo.
		31 = Programmed Position Mode, Stepper.
		This is the required mode for homing.
0xc2	RF	Homing Method. See table below for values.
0xc3	RF	Fast Velocity Units: 0.1 counts/second.
0xc4	RF	Slow Velocity Units: 0.1 counts/second.
0xc5	RF	Acceleration / Deceleration Units: 10 counts/second ² .
0xc6	RF	Home Offset Units: counts.
0xc7	RF	Current Limit Units: 0.01 A.
0xbf	RF	Current Delay Time Units: milliseconds.
0xb8	RF	Positive Software Limit Units: counts.
0xb9	RF	Negative Software Limit Units: counts.

Example

The controller modifies the homing parameters, enables the drive in the Programmed Position Mode, initiates a homing sequence and then monitors homing status.

Command Response Comment

Setting the homing parameters is only required if the home sequence stored in flash memory is not satisfactory.

S	r0xc2	544	ok	Sets the homing method to use the next index pulse as home.
s	r0xc4	40000	ok	Sets the slow velocity to 4000 counts/second.
s	r0xc6	1000	ok	Sets the home offset to 1000 counts.
s	r0x24	21	ok	Enables the drive in programmed position mode.
t	2		ok	Starts the homing sequence.

The controller monitors the trajectory status register to determine when the homing sequence is complete.

g r0xc9 v 20480 Controller checks bit 12 of the trajectory status register to determine if the axis was homed successfully. Example displays a status register value of 20480. Decoded, this value shows that bit 12 is set meaning the axis is referenced.

Homing Methods

For a complete description of each homing method, refer to the Appendix on Homing Methods in the CME 2 User Guide.

Method	Start Direction	Value
Set Current Position as Home	N/A	512
Next Index	Positive	544
	Negative	560
Limit Switch	Positive	513
	Negative	529
Limit Switch Out to Index	Positive	545
	Negative	561
Home Switch	Positive	514
	Negative	530
Home Switch Out to Index	Positive	546
	Negative	562
Home Switch In to Index	Positive	610
	Negative	626
Hard Stop	Positive	516
	Negative	532
Hard Stop Out to Index	Positive	548
	Negative	564
Lower Home	Positive	771
	Negative	787
Upper Home	Positive	515
	Negative	531
Lower Home Outside Index	Positive	803
	Negative	819
Lower Home Inside Index	Positive	867
	Negative	883
Upper Home Outside Index	Positive	547
	Negative	563
Upper Home Inside Index	Positive	611
	Negative	627
Immediate Home	N/A	15

4: OPERATION

4.1: Setting the Baud Rate

Parameter 0x90 (RAM only) controls the drive's serial port baud rate. To change the baud rate, write the new value to 0x90. For instance, to change the value to 19200 send: s r0x90 19200. The drive will respond with an "ok" if the command is successful but it will be sent at the new baud rate.

After the carriage return of the s command, no other characters should be sent at 9600 (by default, some programs automatically append a line feed). If more characters are sent at 9600, they may be misinterpreted as a break command and cause the drive to change back to 9600 baud. There should also be a delay of 100 mS minimum before characters at the new baud rate are sent to the drive.

When reading parameter 0x90, note that the value received may not be the exact value set. This is because the drive sets the baud rate as close to the requested baud rate as possible given the internal clock frequencies of the drive's microprocessor.

4.2: Setting Limits and Gains

This section describes the parameters used to set control loop limits and gains.

Parameter ID	Bank	Description
0x21	R F	Peak current limit. Units: 0.01 A.
0x23	R F	I ² T time limit. Units: mS.
0x22	R F	Continuous current limit. Units: 0.01 A.
0xae	RF	Current loop offset. Units: 0.01 A.

Current Loop Limits Parameters

Current Loop Gains Parameters

0x00	R F	Current loop proportional gain (Cp).
0x01	RF	Current loop integral gain (Ci).

Velocity Loop Limits Parameters

Parameter ID	Bank	Description
0x3a	RF	Velocity loop velocity limit. Units: 0.1 counts/second.
0x36	RF	Velocity loop acceleration limit. Units: 1000 counts/second ² .
0x37	RF	Velocity loop deceleration Limit. Units: 1000 counts/second ² .
0xcf	RF	Fast Stop Ramp. Units: 10 counts/second ² .

Velocity Loop Gains Parameters

Parameter ID	Bank	Description
0x27	RF	Velocity loop proportional gain (Vp).
0x28	RF	Velocity loop integral gain (Vi).

Position Loop Limits

Position loop limits are described in Position Mode.

Position Loop Gains Parameters

Parameter ID	Bank	Description
0x30	RF	Pp - Position loop proportional gain.
0x33	RF	Vff - Velocity feed forward.
0x34	RF	Aff - Acceleration feed forward.
0xe3	RF	Position loop gain multiplier. 100 equals a factor of 1.

Filter Parameters

Parameter ID	Bank	Description
0x6b	RF	Velocity loop command filter coefficients.
0x5f	RF	Velocity loop output filter coefficients.
0x150	RF	Second chained biquad filter on the output of the velocity loop (only available on Plus Products).
0x151	RF	Third chained biquad filter on the output of the velocity loop (only available on Plus Products).
0x152	RF	First chained biquad filter on the input of the current loop (only available on Plus Products).
0x153	RF	Second chained biquad filter on the input of the current loop (only available on Plus Products).

Velocity Loops Filters Usage Notes

The velocity loop command and output filters should be set up using CME 2. If it is required that the filters be changed during operation, the following procedure should be used to determine the new filter coefficients.

- **1** Set the filter up using CME 2.
 - For Plus Products open the Filter Configuration screen, for all other products, open the Velocity Loop screen.
 - Choose the filter type, and parameters, then click **Apply**, and then close.
- **2** Use the CME 2 ASCII command line tool (**Tools->ASCII Command Line**) to read the updated parameter. For instance, to read the command filter parameter:

Command	g r0x6B
Response	For Plus Products, the response is a combination of hex and

fi	floating point numbers:
V	V 0x211100c8 0x00010101 1.56119e+00 -
6	641467e-01 2.00687e-02 4.01373e-02 2.00687e-
0	02
	For all other products, the response is nine decimal values: v -7936 200 0 775 1550 775 -12774 32763 5813

3 Write program instructions to update the appropriate parameter with those values. For instance, to write the command filter parameter:

Command	For Plus Products, use the combination of hex and floating point numbers from Step 2: S r0x6B 0x211100c8 0x00010101 1.56119e+00 - 641467e-01 2.00687e-02 4.01373e-02 2.00687e- 02		
	For all other products, the response is nine decimal values from Step 2: s r0x6B -7936 200 0 775 1550 775 -12774 32763 5813		
Response	ok		

4.3: Monitoring Status

Event Status Register (0xa0)

The status register parameter (0xa0) provides drive status information. 0xa0 is read-only, and available in RAM only. Bit mapped values described below:

Bits	Description
0	Short circuit detected.
1	Drive over temperature.
2	Over voltage.
3	Under voltage.
4	Motor temperature sensor active.
5	Feedback error.
6	Motor phasing error.
7	Current output limited.
8	Voltage output limited.
9	Positive limit switch active.
10	Negative limit switch active.
11	Enable input not active.
12	Drive is disabled by software.
13	Trying to stop motor.
14	Motor brake activated.
15	PWM outputs disabled.
16	Positive software limit condition.
17	Negative software limit condition.
18	Tracking error.
19	Tracking warning.
20	Drive has been reset.
21	Position has wrapped. The Position parameter cannot increase indefinitely. After reaching a certain value the parameter rolls back. This type of counting is called position wrapping or modulo count. Note that this bit is only active as the position wraps.
22	Drive fault. A drive fault that was configured as latching has occurred. For information on latching faults, see the CME 2 User Guide.
23	Velocity limit has been reached.
24	Acceleration limit has been reached.
25	Position outside of tracking window.
26	Home switch is active.
27	Set if trajectory is running or motor has not yet settled into position (within Position Tracking Error Limit) at the end of the move. Once the position has settled, the in motion

	bit won't be set until the next move starts.
28	Velocity window. Set if the absolute velocity error exceeds the velocity window value.
29	Phase not yet initialized. If the drive is phasing with no Halls, this bit is set until the drive has initialized its phase.
30	Command fault. PWM or other command signal not present.
31	Not defined.

Trajectory Status Register (0xc9)

The trajectory register parameter (0xc9) provides trajectory generator status information. 0xc9 is read-only, and available in RAM only. Bit mapped values described below:

Bit	Description
0-8	Reserved for future use.
9	Cam table underflow.
10	Reserved for future use
11	Homing error. If set, an error occurred in the last home attempt. Cleared by a home command.
12	Referenced. Set when a homing command has been successfully executed. Cleared by a home command.
13	Homing. If set, the drive is running a home command.
14	Set when a move is aborted. Cleared at the start of the next move.
15	In-Motion Bit. If set, the trajectory generator is presently generating a profile.

Latching Fault Status Register (0xa4)

The fault register parameter (0xa4) shows latching faults that have occurred. 0xa4 is available in RAM only.

Bit mapped values described below:

Bit	Fault Description		
0	Data flash CRC failure. This fault is considered fatal and cannot be cleared.		
1	Drive internal error. This fault is considered fatal and cannot be cleared.		
2	Short circuit.		
3	Drive over temperature.		
4	Motor over temperature.		
5	Over voltage.		
6	Under voltage.		
7	Feedback fault.		
8	Phasing error.		
9	Following error.		
10	Over Current (Latched),		
11	FPGA failure. This fault is considered fatal and cannot usually be cleared. If this fault occurred after a firmware download, repeating the download may clear this fault.		
12	Command input lost.		
13	Reserved.		
14	Safety circuit consistency check failure.		

15	Unable to control motor current
16	Motor wiring disconnected
17	Reserved.
18	Safe torque off active.

Note that when a latching fault has occurred, bit 22 of the status register (0xa0) is set.

To clear a fault condition, write a 1 to the associated bit of the fault register (0xa4).

4.4: Reading Run Time Parameters

This section describes the parameters used to monitor run time conditions.

NOTE: Parameters listed with * are read only.

Current Loop Parameters

Parameter ID	Bank	Description
0x15	R	Commanded current. Units: 0.01 A.
0x0c	R [*]	Actual current. Units: 0.01 A.
0x25	R [*]	Limited current. Units: 0.01 A.

Velocity Loop Parameters

Parameter ID	Bank	Description
0x2c	R	Commanded velocity. Units: 0.1 counts/second.
0x29	R [*]	Limited velocity. Units: 0.1 counts/second.
0x18	R*	Actual motor velocity. Units: 0.1 counts/second.
0x5e	R*	Actual load velocity. Units: 0.1 counts/second.
0x2a	R*	Velocity loop error. Units: 0.1 counts/second.

Position Loop Parameters

Parameter ID	Bank	Description
0x32	R [*]	Motor position. Units: counts.
0x17	R	Load position. Units: counts.
0x35	R [*]	Following Error. Units: counts.

Position Loop Inputs from the Trajectory Generator

Parameter ID	Bank	Description
0x3d	R*	Commanded position. Units: counts.
0x2d	R	Limited position. Units: counts.
0x3B	R*	Profile velocity. Units: 0.1 counts/second.
0x3C	R*	Profile acceleration. Units: 10 counts/second ² .

Parameter ID	Bank	Description
0x1d	R*	Analog input voltage. Units: mV.
0x1b	R*	Sin input voltage. Units: mV.
0x1c	R*	Cos input voltage. Units: mV.
0x1e	R*	Bus voltage. Units: 100 mV.
0x20	R*	Drive temperature. Units: degrees C.
0xb0	R	Phase angle. Units: degrees.

Miscellaneous System Parameters

4.5: Reading Digital Inputs

Input Pin States (0xa6)

The high/low states of the drive's programmable digital inputs can be read using parameter 0xa6. Each bit represents an input number as shown below. If an input is high, the corresponding bit is set to 1. If the input is low, the corresponding bit is set to 0.

For instance, if the value of 0xa6 is 33, the binary equivalent is 100001, showing that IN1 and IN6 are high and the other inputs are low.

0xa6 is read-only, and available in RAM only. Bit mapped values described below.

NOTE: The number of programmable digital inputs varies depending on drive model. Refer to the drive's data sheet for specific information.

Bit	Input
0	Digital Input 1
1	Digital Input 2
2	Digital Input 3
n	Digital Input n+1

Extended Input States (0x15c)

Same as parameter 0xa6 above, except it is a 32-bit version to accommodate drives with more than 16 inputs.

4.6: Reading/Setting Digital Outputs

The drives digital outputs can be programmed by CME 2 to reflect the state of any one or more of the drive's event status register bits. The outputs can also be configured so their state can be set by the controller program.

The external controller, through the Output State parameter, can set an output inactive or active. The actual level of the output pin however is determined by the Output Configuration parameter. This parameter sets the actual output pin to be high or low when active. When the drive powers up or is reset, all outputs are initially inactive. To ensure that outputs are high, or off, after power up or reset, they should be configured as active low.

Output Configuration (0x70 – 0x77, 0x1a0 – 0x1a3)

Before a controller program can set an output pin's active/inactive state, the output must be configured for program control. This is done by setting the appropriate bits in the output's configuration parameter. Output configurations require 3 or 5 words depending on the configuration. Refer to the Parameter Dictionary for details.

NOTE: The number of programmable digital inputs varies depending on drive mode. See the drive's datasheet for details.

Parameter ID	Memory Bank	Description
0x70 – 0x77	RF	Output 1 through 8 Configuration. 258 0 = Program Control, Active High 2 0 = Program Control, Active Low
0x1a0 – 0x1a3	RF	Output 9 through 12 Configuration. Same as Outputs 1through 8

Output States and Program Control (0xab)

Writing the parameter 0xab sets the active/inactive states of digital outputs that have been configured for program control. Each bit represents an output number as shown below. A bit value of 1 corresponds to an active output. A bit value of 0 corresponds to an inactive output. Writing a 1 or 0 to an output that has not been configured for program control will have no effect on the output.

Reading 0xab gets the active/inactive states of all the drive's digital outputs, including those which are not set to program control.

NOTE: The number of programmable digital outputs varies depending on drive model. See the drive documentation.

Bit	Output
0	Digital Output 1
1	Digital Output 2
n	Digital Output n+1

Example

The controller configures 2 outputs for program control, reads the state of the outputs, and then sets an output low.

Command	Response	Comment
s r0x72 258 0	ok	Configures output 3 to program control, active low.
s r0x73 258 0	ok	Configures output 4 to program control, active low.
g r0xab	v 10	Reads the state of the outputs. Example returns a value of 10. Converting this value to binary equals 1010 which indicates outputs 2 and 4 are active.
s r0xab 4	ok	4 converted to binary equals 0100. This value will set Output 4 inactive and Output 3 active. Outputs 4 and 3 have been programmed active low so Output 4 will be high and 3 will be low. Since Outputs 1 and 2 are not under program control, they will not change state.

5: QUICK REFERENCE TO THE PARAMETERS

5.1: Parameters by Function

Programmed Current Mode Parameters			
0x02	Programmed current value. Units: 0.01 A.		
0x6a	Current ramp limit. Units: mA/second.		
Analo	g Current Mode Parameters		
0x19	Analog input scaling factor. Units: 0.01 A.		
0x26	Analog input dead band. Units: mV.		
0x1a	Analog input offset. Units: mV.		
PWM	Current Mode Parameters		
0xa9	Digital input scaling factor. Units: 0.01 A.		
0xa8	Digital input command configuration.		
Progra	ammed Velocity Mode Parameters		
0x2f	Programmed velocity command. Units: 0.1 counts/second.		
0x36	Velocity acceleration limit. Units: 1000 counts/second ²		
0x37	Velocity deceleration limit. Units: 1000 counts/second ²		
0x39	Fast stop ramp. Units: 1000 counts/second ²		
Analo	g Velocity Mode Parameters		
0x19	Analog input scaling factor. Units: 0.1 counts/second		
0x26	Analog input dead band. Units: mV.		
0x1a	Analog input offset. Units: mV.		
0x36	Velocity acceleration limit. Units: 1000 counts/second ²		
0x37	Velocity deceleration limit. Units: 1000 counts/second ²		
0x39	Fast stop ramp. Units: 1000 counts/second ²		
PWM Velocity Mode Parameters			
0xa9	Scaling Factor. Units: 0.1 counts/second.		
0x36	Velocity acceleration limit. Units: 1000 counts/second ²		
0x37	Velocity deceleration limit. Units: 1000 counts/second ²		
0x39	Fast stop ramp. Units: 1000 counts/second ²		
0xa8	Digital input command configuration.		

Programmed Position Mode Parameters			
0xc8	Profile type		
0xca	Position command		
0xcb	Maximum velocity. Units: 0.1 counts/second.		
0xcc	Maximum acceleration rate. Units: 10 counts/second ² .		
0xcd	Maximum deceleration rate. Units: 10 counts/second ² .		
0xce	Maximum jerk rate. Units: 100 counts/ second ³ .		
0xcf	Abort deceleration rate. Units: 10 counts/second ² .		
Analo	g Position Mode Parameters		
0x19	Analog input scaling factor. Units: counts.		
0x26	Dead band. Units: mV.		
0xcb	Maximum velocity. Units: 0.1 counts/second.		
0xcc	Maximum acceleration rate. Units: 10 counts/second ² .		
0xcd	Maximum deceleration rate. Units: 10 counts/second ² .		
0xcf	Abort deceleration rate. Units: 10 counts/second ² .		
Pulse and Direction Mode Parameters			
0xa8	Digital Command Configuration		
0xa9	Scaling factor. Output counts/Input pulses.		
0xcb	Maximum velocity. Units: 0.1 counts/second.		
0xcc	Maximum acceleration rate. Units: 10 counts/second ² .		
0xcd	Maximum deceleration rate. Units: 10 counts/second ² .		
0xcf	Abort deceleration rate. Units: 10 counts/second ² .		
Pulse Up/Down Mode Parameters			
0xa8	Digital Command Configuration		
0xa9	Scaling factor, Output counts/Input pulses.		
0xcb	Maximum velocity. Units: 0.1 counts/second.		
0xcc	Maximum acceleration rate. Units: 10 counts/second ² .		
0xcd	Maximum deceleration rate. Units: 10 counts/second ² .		
0xcf	Abort deceleration rate. Units: 10 counts/second ² .		

Quadrature Mode Parameters				
0xa8	Digital Command Configuration			
0xa9	Scaling factor, Output counts/Input pulses.			
0xcb	Maximum velocity. Units: 0.1 counts/second.			
0xcc	Maximum acceleration rate. Units: 10 counts/second ² .			
0xcd	Maximum deceleration rate. Units: 10 counts/second ² .			
0xcf	Abort deceleration rate. Units: 10 counts/second ² .			
Homi	ng Mode Parameters			
0xc2	Homing Method. See table below for values.			
0xc3	Fast Velocity. Units: counts/second			
0xc4	Slow Velocity. Units: counts/second			
0xc5	Acceleration / Deceleration. Units: 10 counts/second ² .			
0xc6	Home Offset. Units: counts.			
0xc7	Current Limit. Units: 0.01 A.			
0xbf	Current Delay Time. Units: milliseconds.			
0xb8	Positive Software Limit. Units: counts.			
0xb9	0xb9 Negative Software Limit. Units: counts.			
Curre	ent Loop Limits Parameters			
0x21	Peak current limit. Units: 0.01 A.			
0x23	I ² T time limit. Units: mS.			
0x22	Continuous current limit. Units: 0.01 A.			
0xae	Current loop offset. Units: 0.01 A.			
Current Loop Gains Parameters				
0x00	Current loop proportional gain (Cp).			
0x01	Current loop integral gain (Ci).			
Velocity Loop Limits Parameters				
0x3a	Velocity loop velocity limit. Units: 0.1 counts/second.			
0x36	Velocity loop acceleration limit. Units: 1000 counts/second ² .			
0x37	Velocity loop deceleration Limit. Units: 1000 counts/second ² .			
0xcf	Fast Stop Ramp. Units: 10 counts/second ² .			
Velocity Loop Gains Parameters				
0x27	Velocity loop proportional gain (Vp).			
0x28	Velocity loop integral gain (Vi).			
Velocity Loop Filters Parameters				
0x6b	Velocity loop command filter coefficients.			
0x5f	Velocity loop output filter coefficients.			
Position Loop Gains Parameters				
0x30	Pp - Position loop proportional gain.			
0x33	Vff - Velocity feed forward.			

0x34	Aff - Accel	eration feed forward.		
0xe3	Position loop gain multiplier.			
Curre	nt Loop Ru	in Time Parameters		
0x15	Commanded current. Units: 0.01 A.			
0x0c	Actual current. Units: 0.01 A.			
0x25	Limited cu	rrent. Units: 0.01 A.		
Veloc	ity Loop Rເ	un Time Parameters		
0x2c	Command	ed velocity. Units: 0.1 counts/second.		
0xcb	Profile velo	ocity. Units: 0.1 counts/second.		
0x29	Limited ve	locity. Units: 0.1 counts/second.		
0x18	Motor velo	city. Units: 0.1 counts/second.		
0x5e	Load veloo	city. Units: 0.1 counts/second.		
0x2a	Velocity lo	op error.		
Positi	on Loop R	un Time Parameters		
0x3d	Command	ed position. Units: counts.		
0x2d	Limited po	sition. Units: counts.		
0x32	Motor posi	ition. Units: counts.		
0x17	Load posit	ion. Units: counts.		
0x35	Following	Error. Units: counts.		
Position Loop Inputs from the Trajectory Generator (Parameters)				
0x3b	3b Profile velocity. Units: 0.1 counts/second.			
0x3c	Profile acceleration. Units: 10 counts/second ² .			
0x2d	Limited position. Units: counts.			
Miscellaneous System Parameters				
0x1d	Analog input voltage. Units: mV.			
0x1b	Sin input v	roltage.		
0x1c	Cos input	voltage.		
0x1e	Bus voltag	e. High voltage A/D reading. Units: 100 mV.		
0x20	Drive temperature. Units: degrees C.			
0xb0	Phase angle. Units: degrees.			
0x90	Baud rate			
Inputs and Outputs				
0xa6 o	xa6 or 0x15c Read input states			
0xab		Read/Write output states.		
0x70 t	hru 0x77	Configure outputs.		
0x1a0	thru			
Status	s and State			
Uxa0	Status Reg	gister.		

0xc9	Trajectory Register.
0xa4	Fault Register.
0x24	Drive desired state.

6: CME 2 ASCII COMMAND LINE TOOL

The CME 2 ASCII Command Line tool lets users send individual ASCII commands to drives.

1 From the CME 2 Main screen, select **Tools->ASCII Command Line** from the menu bar to open the ASCII Command Line screen:

🎱 ASCII Com	mand Line	- • •
Command:		
Response:		4
		Close

- 2 Enter an ASCII command in the Command field.
- **3** Press the Enter key to send the command to the drive. Observe the response in the Response field.

If a value is returned, it is preceded by the letter "v." In the following example, the get command was used to retrieve the RAM value of parameter 0x32 (actual position).

🍪 ASCII Com	imand Line	- • •
Command:	g r0x24	
Response:	v 30	
	•	4
		Close

An error code is preceded by the letter "e." To view an error definition, hold the cursor over the error number. See Error Codes

🔮 ASCII Com	imand Line	
Command:	g 0x24	
_		
Response:	e 33	•
		r
		Close

7: SERIAL AND MULTI-DROP CONNECTION

7.1: Connecting

Instructions for hooking up a single-axis connection and a multi-drop network appear below.

Single-Axis Connections

For RS-232 serial bus control of a single axis, set the CAN node address of that axis to zero (0). Note that if the CAN node address is switched to zero after power-up, the drive must be reset or power cycled to make the new address setting take effect.

Multi-Drop Network Connections

For RS-232 serial bus control of multiple axes, set the CAN node address of the serially connected drive (gateway) to zero (0). Assign each additional drive in the chain a unique CAN node address value between 1 and 127. For information on CAN node address, see the drive user guide or data sheet. Verify that all drives are set to the same CAN bit rate. Use 120 Ω termination on the first and last drive.

The CAN Status Light and Multi-Drop Connections

When starting drives on a multi-drop CAN loop, it is common to see a green-green-red flash sequence on the CAN Status Indicator LED of the first drive to start up. This sequence indicates

that the drive has not found any other active nodes on the CAN loop. Under normal circumstances, this flash sequence does not indicate a problem, and it will clear after the first few commands are sent to the drive.

To avoid seeing this flash sequence, assure that the gateway drive starts up first. The CAN status indicator will always be off on node 0.

A: ERROR CODES

Error Codes

Code	Meaning
1	Too much data passed with command
3	Unknown command code
4	Not enough data was supplied with the command
5	Too much data was supplied with the command
9	Unknown parameter ID
10	Data value out of range
11	Attempt to modify read-only parameter
14	Unknown axis state
15	Parameter doesn't exist on requested page
16	Illegal serial port forwarding
18	Illegal attempt to start a move while currently moving
19	Illegal velocity limit for move
20	Illegal acceleration limit for move
21	Illegal deceleration limit for move
22	Illegal jerk limit for move
25	Invalid trajectory mode
27	Command is not allowed while CVM is running
31	Invalid node ID for serial port forwarding
32	CAN Network communications failure
33	ASCII command parsing error
36	Bad axis letter specified
46	Error sending command to encoder
48	Unable to calculate filter

EXLAR

ASCII Interface Programmer's Guide P/N 16-01196 Revision 01 April 2015

> © 2015 Copley Controls 20 Dan Road Canton, MA 02021 USA All rights reserved