

Global Leader in Actuator Technology

Your Actuator Solution Source

The Exlar® product offerings cover a wide range of performance specifications and capabilities. Please view the chart below as a thumbnail guide to assist you in choosing the best product for your application. Three product families shown in the table below are not included in this catalog, but are offered in separate brochures as offered below. You may also visit www.exlar.com to download the brochures and view complete specifications.

Linear Actuators	Series	Standard Environmental Rating	Integrated Control Electronics	Integrated Brushless Motor	Nominal Frame Sizes in (mm)	Max Stroke Length in (mm)	Max Cont. Force lbf (kN)	Max Velocity in/sec ($\mathrm{mm} / \mathrm{sec}$)	Explosion Proof (CID1)	NonIncendive (CID2)
Tritex II AC Integrated Drive /Motor/Actuator	T2X	IP65S	S	S	$\begin{gathered} 90, \\ 115 \mathrm{~mm} \end{gathered}$	18 (455)	$\begin{aligned} & 3,685 \\ & (16.4) \end{aligned}$	$\begin{aligned} & 37.5 \\ & (953) \end{aligned}$		0
Tritex II DC Integrated Drive /Motor/Actuator	TDX	IP65S	S	S	60, 75 mm	18 (455)	$\begin{aligned} & 955 \\ & (4.2) \end{aligned}$	$\begin{gathered} 33.3 \\ (847) \end{gathered}$		0
EL Series Integrated Motor/Actuator	EL120	IP66S		S	120 mm	18 (455)	$\begin{aligned} & 4,081 \\ & (18.2) \end{aligned}$	$\begin{gathered} 37.5 \\ (953) \end{gathered}$	S	
	EL100	IP66S		S	4 inch	6 (150)	$\begin{array}{r} 2,011 \\ (8.9) \end{array}$	$\begin{gathered} 33.3 \\ (847) \end{gathered}$	S	
GS Series Integrated Motor/Actuator	GSX	IP65S		S	2-7 inch	18 (455)	$\begin{aligned} & 12,389 \\ & (55.1) \end{aligned}$	$\begin{gathered} 40.0 \\ (1,016) \end{gathered}$		0

*Base unit only
O = Available option
S = Standard

Rotary Actuators	Series	Standard Environmental Rating	Integrated Control Electronics	Integrated Planetary Gearhead		Max Cont. Torque in-Ibf (Nm)	Max Velocity RPM	Explosion Proof (CID1)	NonIncendive (CID2)
Tritex II AC Rotary Gearmotor	R2G	IP65S	S	S	$\begin{gathered} 75,90 \\ 115 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & 4,066 \\ & (459) \end{aligned}$	1,000		
Tritex II AC Rotary Motor	R2M					$\begin{gathered} 95 \\ (10.7) \end{gathered}$	4,000		0
Tritex II DC Rotary Gearmotor	RDG	IP65S	S	S	$\begin{aligned} & 60,75, \\ & 90 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 1,798 \\ & (203) \end{aligned}$	1,250		0
Tritex II DC Rotary Motor	RDM					$\begin{gathered} 42 \\ (4.8) \end{gathered}$	5,000		
ER Series Rotary Gearmotor	ER120	IP65S		S	4 inch	$\begin{aligned} & 4,128 \\ & (466) \end{aligned}$	750	S	
ER Series Rotary Motor	ER120	IP65S			4 inch	$\begin{gathered} 120 \\ (13.6) \end{gathered}$	3,000	S	
Brushless Rotary Gearmotor	SLG	IP65S		S	$\begin{gathered} 60,75,90, \\ 115 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & 4,696 \\ & (530) \end{aligned}$	1,250		0
Brushless Rotary Motor	SLM	IP65S			$\begin{gathered} 60,75,90 \\ 115,142, \\ 180 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 615 \\ (69.49) \end{gathered}$	5,000		0

page
ROLLER SCREW TECHNOLOGY 4
EL120 LINEAR ACTUATORS 7
Mechanical Specifications 10
Drawings 13
Ordering Guide 14
EL100 LINEAR ACTUATORS 15
Mechanical Specifications 17
Drawings 20
Ordering Guide 22
ER120 ROTARY MOTORS. 23
Mechanical Specifications. 26
Drawings 29
Ordering Guide 30
TRITEX II AC ACTUATORS. 31
AC Linear 36
AC Rotary. 48
Ordering Guide 54
TRITEX II DC ACTUATORS 56
DC Linear 56
DC Rotary 66
Ordering Guide 72
GSX SERIES LINEAR ACTUATORS 74
Drawings 76
Ordering Guide 80
SLM AND SLG SERIES ROTARY MOTORS AND GEARMOTORS. 81
Drawings 83
Ordering Guide 88
ENGINEERING REFERENCE 89
TERMS AND CONDITIONS. 101

Roller Screw Technology

The Advantages of Roller Screw Technology

Designers have five basic choices when it comes to achieving controlled linear motion. The table on page 5 gives you a quick overview of the general advantages that are associated with each. Because the roller screw technology common to all Exlar linear actuators might not be familiar to everyone using this catalog, allow us to present a general overview.

The difference is in the way the roller screw is designed to transmit forces. Multiple threaded helical rollers are assembled in a planetary arrangement around a threaded shaft (shown below) which converts the motor's rotary motion into linear movement of the shaft or nut.

Roller Screw Basics

A roller screw is a mechanism for converting rotary torque into linear motion in a similar manner to acme screws or ball screws. Unlike those devices, roller screws can carry heavy loads for thousands of hours in the most arduous conditions. This makes roller screws the ideal choice for demanding, continuousduty applications.

Exlar Roller Screws vs Hydraulics \& Pneumatics

In applications where high loads are anticipated or faster cycling is desired, Exlar's roller screw actuators provide an attractive alternative to the hydraulic or pneumatic options. With their vastly simplified controls, electro-mechanical units using roller screws have major advantages.

- Eliminates the need for a complex support system of valves, pumps, filters and sensors.
- Requires much less space.
- Extends working life.
- Minimizes maintenance.
- Eliminates hydraulic fluid leaks.
- Reduces noise levels.
- Allows the flexibility of computer programmed positioning.

Exlar Roller Screws vs Ball Screws Performance

Loads and Stiffness: Due to design factors, the number of contact points in a ball screw is limited by the ball size. Exlar's planetary roller screw designs provide many more contact points than possible on comparably sized ball screws. Since the number of contact points is greater, roller screws have greater load carrying capacities, plus improved stiffness. Plus an Exlar roller screw actuator takes up much less space to meet the designer's specified load rating.

Travel Life: As you would expect, with their higher load capacities, roller screws deliver major advantages in working life. Usually measured in "Inches of Travel," the relative travel lives for roller and ball screws are displayed on the graph on page 5 . As shown, in a $2,000 \mathrm{lb}$. average load application applied to a 1.2 inch screw diameter with a 0.2 inch lead, the roller screw will have an expected service life that is 15 times greater than that of the ball screw.

Speeds: Typical ball screw speeds are limited to 2000 rpm and less, due to the interaction of the balls colliding with each other as the race rotates. In contrast, the rollers in a roller screw are fixed in planetary fashion by journals at the ends of the nut and therefore do not have this limitation. Hence, roller screws can work at 5000 rpm and higher, producing comparably higher linear travel rates.

Roller Screw Technology

Lifetime Comparison (Roller vs Ball Screws)

Roller Screw vs. Other Linear Motion Technologies

(Used in electronic positioning applications)

	Exlar Roller Screws	Acme Screws	Ball Screws	Hydraulic Cylinders	Pneumatic Cylinders
Load ratings	Very High	High	High	Very High	Low
Lifetime	Very long, many times greater than ball screw	Very low, due to high friction \& wear	Moderate	Can be long with proper maintenance	Can be long with proper maintenance
Speed	Very high	Low	Moderate	Moderate	Very high
Acceleration	Very high	Low	Moderate	Very high	Very high
Electronic Positioning	Easy	Moderate	Easy	Difficult	Very Difficult
Stiffness	Very high	Very high	Moderate	Very high	Very low
Shock Loads	High	Very high	Moderate	Very high	High
Relative Space Requirements	Minimum	Moderate	Moderate	High	High
Friction	Low	High	Low	High	Moderate
Efficiency	>90\%	approx 40\%	>90\%	<50\%	<50\%
Installation	Compatible with standard servo electronic controls	User may have to engineer a motion/ actuator interface	Compatible with standard servo electronic controls	Complex, requires servo-valves, high pressure plumbing, filtering, pumps linear positioning \& sensing	Very complex requires servo-valves, plumbing, filtering, compressors linear positioning \& sensing
Maintenance	Very low	High, due to poor wear characteristics	Moderate	Very high	High
Environmental	Minimum	Minimum	Minimum	Hydraulic fluid leaks \& disposal	High noise levels

EL/ER Series Explosion-Proof Actuators and Motors

HAZARDOUS LOCATION ACTUATORS AND MOTORS

High precision positioning with integrated feedback Ability to handle heavy loads over thousands of hours

High efficiency and 100\% duty cycle
Class 1, Division 1 Classification

EL120 Explosion-Proof Actuators

EL120

ATEX Rated Explosion-Proof Linear Actuators

Perfect for valve control or other hazardous environment applications, the EL120 is a high performance electric actuator offered as a direct replacement for hydraulics. EL120 actuators feature longer life, linear speeds up to 37 inches per second, closed loop feedback, 90% efficiency and 100% duty cycle.

For gas turbines with variable guide vanes, EL120 actuators provide precise positioning and feedback for fine tuning injector airflow to effectively manage CO and NOx emissions. In Oil \& Gas applications, the EL120 is well suited for position-based drilling choke valves.

163694

Class I Division 1
US Groups B, C, D, T4

Features

Forces up to 4000 lbs
Speeds up to 37.5 ips
Strokes up to 18 inches
8 pole brushless motors
Feedback configurations for nearly any servo amplifier
Several mounting configurations
Windings available from 24 VDC to 460 Vrms
CSA Class I, Div 1 Group B, C, D, and T4 hazardous environment rating
ATEX, Ex d II B +H2 T4 Gb IP66S, Type 4
IECEx CSA 14.0014
Completely sealed motor assures trouble-free operation

EL120 explosion-proof actuators meet ATEX requirements for use in potentially explosive atmospheres and are in conformity with the EU ATEX Directive 2014/34/EU. Additionally, these actuators are rated for Class 1, Division 1, Groups B, C, D, and T4 hazardous environments.

The EL Series integrates a highly efficient planetary roller screw mechanism with a high torque servomotor in a single selfcontained package. This highly robust design is engineered to provide reliable and precise operation over thousands of hours, handling heavy loads-even under very arduous conditions.

The EL120 Actuator is compatible with nearly any manufacturer's servo amplifier.

Technical Characteristics	
Frame Sizes in (mm)	$4.7(120)$
Screw Leads in (mm)	$0.1(2.54), 0.2(5.08)$,
	$0.5(12.7), 0.8(20.3)$
Standard Stroke Lengths	$4(100), 6(150), 8(200)$,
in (mm $)$	$10(250), 12(300), 18(450)$
Force Range	up to 4081 lbf -in $(18 \mathrm{kN})$
Maximum Speed	up to $37.5 \mathrm{in} / \mathrm{sec}(953 \mathrm{~mm} / \mathrm{s})$

Operating Condifions and Usage		
Accuracy:		
Screw Lead Error	in/ft $(\mu \mathrm{m} / 300 \mathrm{~mm})$	$0.001(25)$
Screw Travel Variations	in/ft $(\mu \mathrm{m} / 300 \mathrm{~mm})$	$0.0012(30)$
Screw Lead Backlash	in (mm)	0.004 maximum
Ambient Conditions:		
Ambient Temperature	${ }^{\circ} \mathrm{C}$	-29 to 93
Storage Temperature	${ }^{\circ} \mathrm{C}$	-54 to 93
IP Rating		IP66
Rel. Humidity	$\%$	5 to 100 at $60^{\circ} \mathrm{C}$
Vibration		3.5 grms, 5 to 520 hz

Product Features

1- Two 0.75 in NPT Ports, Front Facing (as viewed from rod end) $2-$ Two 0.75 in NPT Ports, Back Facing (as viewed from rod end)
3 - Two 0.75 in NPT Ports, Right Facing (as viewed from rod end) $4-$ Two 0.75 in NPT Ports, Left Facing (as viewed from rod end)
5 - Threaded Front \& Rear Face, Metric and Threaded Front \& Rear Face, English 6-Standard Front Flange 7-Standard Rear Flange 8 - Metric Rear Clevis
9 - English Rear Clevis 10 - Metric Rear Eye 11 - English Rear Eye 12-Male, US Standard Thread 13 - Male, Metric Thread 14 - Female, US Standard Thread
15 - Female, Metric Thread 16 - External anti-rotate assembly

EL120 Explosion-Proof Actuators

Industries and Applications

Process Control

Valve control
Damper control
Turbine control
Choke valves
Fuel control
Plunger pumps

Automotive

Paint booths
Fuel control
Engine test stands
Defense
Weapons room

Material Handling

Printing presses

Notes

Mechanical Specifications

Motor Stacks		1 Stack				2 Stack				3 Stack		
Screw Lead Designator		01	02	05	08	01	02	05	08	02	05	08
Screw Lead	in	0.1	0.2	0.5	0.75	0.1	0.2	0.5	0.75	0.2	0.5	0.75
	mm	2.54	5.08	12.7	19.05	2.54	5.08	12.7	19.05	5.08	12.7	19.05
Continuous Force** (Motor Limited)	lbf	2,984	1,748	839	559	NA	2,865	1,375	917	4,081	1,959	1,306
	N	13,272	7,776	3,733	2,488	NA	12,744	6,117	4,078	18,152	8,713	5,809
Max Velocity	in/sec	5	10	25	37.5	5	10	25	37.5	10	25	37.5
	$\mathrm{mm} / \mathrm{sec}$	127	254	635	953	127	254	635	953	254	635	953
Friction Torque	in-lbf	2.7				3.0				3.5		
	N-m	0.31				0.34				0.40		
Friction Torque (preloaded screw)	in-lbf	7.2				7.5				8.0		
	N-m	0.82				0.85				0.91		
Back Drive Force ${ }^{1}$	lbf	380	150	60	50	380	150	60	50	150	60	50
	N	1700	670	270	220	1700	670	270	220	670	270	220
Min Stroke	in	4				NA	6			8		
	mm	100				NA	150			200		
Max Stroke	in	18			12	NA	18		12	18		12
	mm	450			300	NA	450		300	450		300
C_{a} (Dynamic Load Rating)	lbf	7900	8300	7030	6335	7900	8300	7030	6335	8300	7030	6335
	N	35,141	36,920	31,271	28,179	35,141	36,920	31,271	28,179	36,920	31,271	28,179
Inertia (zero stroke)	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2}$	0.01132				0.01232				0.01332		
	Kg-m ${ }^{2}$	0.000012790				0.00001392				0.00001505		
Inertia (per inch of stroke)	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in}$	0.0005640										
	$\mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.0000006372										
Weight (zero stroke)	lb	8.0				11.3				14.6		
	Kg	3.63				5.13				6.62		
Weight Adder (per inch of stroke)	$\mathrm{lb} / \mathrm{in}$	2.0										
	$\mathrm{Kg} / \mathrm{mm}$	0.91										
- Please note that stroke mm are Nominal dimensions. ${ }^{*}$ Force ratings at $25^{\circ} \mathrm{C}$. "* Inertia +/-5\% ${ }^{1}$ Back drive force is a nominal value only. Operating conditions can cause wide variations in back drive force. Exlar cannot assure that an actuator will or will not back drive.												

DEFINITIONS:

Continuous Force: The linear force produced by the actuator at continuous motor torque.

Max Velocity: The linear velocity that the actuator will achieve at rated motor rpm.

Friction Torque (standard screw): Amount of torque required to move the actuator when not coupled to a load.

Friction Torque (preloaded screw): Amount of torque required to move the actuator when not coupled to a load.

Back Drive Force: Amount of axial force applied to the rod end of the actuator that will produce motion with no power applied to the actuator.

Min Stroke: Shortest available stroke length.

Max Stroke: Longest available stroke length.
C_{a} (Dynamic Load Rating): A design constant used when calculating the estimated travel life of the roller screw.

Inertia (zero stroke): Base inertia of an actuator with zero available stroke length.

Inertia Adder (per inch of stroke): Inertia per inch of stroke that must be added to the base (zero stroke) inertia to determine the total actuator inertia.

Weight (zero stroke): Base weight of an actuator with zero available stroke length.

Weight Adder (per inch of stroke): Weight adder per inch of stroke that must be added to the base (zero stroke) weight to determine the total actuator weight.

Electrical Specifications

Motor Stator		118	138	158	168	238	258	268	338	358	368
Bus Voltage	Vrms	115	230	400	460	230	400	460	230	400	460
Speed @ Bus Voltage	rpm	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000
RMS SINUSOIDAL COMMUTATION DATA											
Continuous Motor Torque	Ibf-in	74.1	74.1	74.3	74.1	123.6	121.4	123.6	172.3	168.9	176.9
	N-m	8.37	8.37	8.39	8.37	13.96	13.72	13.96	19.46	19.09	19.98
Peak Motor Torque	lbf-in	148.20	148.20	148.60	148.10	247.20	242.80	247.20	344.50	337.80	353.70
	N-m	16.74	16.74	16.79	16.74	27.93	27.43	27.93	38.93	38.17	39.96
Torque Constant (Kt)	lbf-in	4.30	8.70	15.70	17.30	8.70	15.80	17.30	8.50	15.80	17.50
	$\mathrm{N}-\mathrm{m} / \mathrm{A}$	0.49	1.00	1.80	2.00	1.00	1.80	2.00	1.00	1.80	2.00
Continuous Current Rating	A	19.10	9.50	5.30	4.80	15.90	8.60	8.00	22.70	11.90	11.30
Peak Current Rating	A	38.20	19.10	10.60	9.50	31.80	17.10	15.90	45.40	23.80	22.50
O-PEAK SINUSOIDAL COMMUTATION											
Continuous Motor Torque	Ibf-in	74.1	74.1	74.3	74.1	123.6	121.4	123.6	172.3	168.9	176.9
	N-m	8.37	8.37	8.39	8.37	13.96	13.72	13.96	19.46	19.09	19.98
Peak Motor Torque	lbf-in	148.20	148.20	148.60	148.10	247.20	242.80	247.20	344.50	337.80	353.70
	N-m	16.74	16.74	16.79	16.74	27.93	27.43	27.93	38.93	38.17	39.96
Torque Constant (Kt)	lbf-in/A	3.10	6.10	11.10	12.30	6.10	11.20	12.30	6.00	11.20	12.40
	N-m/A	0.35	0.70	1.30	1.40	0.70	1.30	1.40	0.70	1.30	1.40
Continuous Current Rating	A	27.00	13.50	7.50	6.70	22.50	12.10	11.30	32.10	16.90	15.90
Peak Current Rating	A	54.00	27.00	15.00	13.50	45.00	24.20	22.50	64.20	33.70	31.90
MOTOR DATA											
$\begin{aligned} & \text { Voltage Constant @ } \\ & 25^{\circ} \mathrm{C}(\mathrm{Ke}) \end{aligned}$	Vrms	29.6	59.2	106.9	118.5	59.2	108.2	118.5	58.0	108.2	119.8
	Krpm	41.9	83.8	151.2	167.6	83.8	153.0	167.6	82.0	153.0	169.4
Pole Configuration		8	8	8	8	8	8	8	8	8	8
Resistance (L-L)	Ohms	0.20	0.80	2.60	3.21	0.34	1.17	1.35	0.20	0.72	0.81
Inductance (L-L)	mH	3.30	11.90	42.40	48.30	5.90	21.10	25.30	3.70	11.60	17.10
Brake Inertia	\|bf-in-sec ${ }^{2}$	0.00146									
	$\mathrm{kg}-\mathrm{cm}^{2}$	1.66									
$\begin{aligned} & \text { Brake Current @24 VDC } \\ & +\mid-10 \% \end{aligned}$	A	1.0									
Brake Holding Torque - Dry	lbf-in	177									
	Nm/A	20									
Brake Engage/Disengage Time	ms	13/50									
Mechanical Time Constant (tm)	ms	0.79	0.79	0.79	0.79	0.60	0.63	0.60	0.54	0.56	0.51
Electrical Time Constant (te)	ms	16.26	14.88	16.34	15.06	17.60	18.06	18.72	18.51	16.06	21.16
Friction Torque	lbf-in	1.43	1.43	1.43	1.43	1.81	1.81	1.81	2.32	2.32	2.32
	N-m	0.16	0.16	0.16	0.16	0.20	0.20	0.20	0.26	0.26	0.26
Insulation Class		180(H)									
Ambient Temperature Rating		$-29^{\circ} \mathrm{C}$ to $93^{\circ} \mathrm{C}$									
Insulation System Voltage Rating		T4, $135^{\circ} \mathrm{C}$ Maximum Allowable Surface Temperature									

Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient.

Speed vs. Force Curves

The speed vs. force curves (below) represent approximate continuous thrust ratings at the indicated linear speed. Different types of servo amplifiers offer varying motor torque

Estimated Service Life

The L_{10} expected life of a roller screw linear actuator is expressed as the linear travel distance that 90% of properly maintained roller screws are expected to meet or exceed. For higher than 90% reliability, multiply the result by the following factors: $95 \% \times 0.62 ; 96 \% \times 0.53 ; 97 \% \times 0.44 ; 98 \% \times 0.33 ; 99 \%$ $x 0.21$. This is not a guarantee; these charts should be used for estimation purposes only.

The underlying formula that defines this value is:
Travel life in millions of inches, where:
$\mathrm{C}_{\mathrm{a}}=$ Dynamic load rating (lbf)
$\mathrm{F}_{\mathrm{cml}}=$ Cubic mean applied load (lbf)
$\ell=$ Roller screws lead (inches)
All curves represent properly lubricated and maintained actuators.
Ratings may vary, depending on the application.
and, thus, varying actuator thrust. These values are at constant velocity and do not account for motor torque required for acceleration.

Dimensions

Base Actuator

All dimensions shown in mm (inches)

Clevis Mount and Manual Drive Options

Front and Rear Flange Mount

Dim	4 in $(102 \mathrm{~mm})$ Stroke in (mm)	6 in $(152 \mathrm{~mm})$ Stroke in (mm)	8 in $(203 \mathrm{~mm})$ Stroke in (mm)	10 in $(254 \mathrm{~mm})$ Stroke in (mm)	12 in $(305 \mathrm{~mm})$ Stroke in (mm)	18 in $(457 \mathrm{~mm})$ Stroke in (mm)
A	$345(13.6)$	$396(15.6)$	$447(17.6)$	$498(19.6)$	$549(21.6)$	$701(27.6)$

Note: Add 1.63 Inches (41.4 mm) to Dims " A " if ordering a brake without a manual drive.

EL120 Series Ordering Guide

Rod End Options

EL = Model Series
$E L=$ Explosion proof linear actuator
AAA = Frame Size
$120=120 \mathrm{~mm}$
$B B=$ Stroke Length
$04=4$ in
$06=6$ in
$08=8$ in
$10=10$ in
$12=12$ in
$18=18$ in
CC= Screw Lead (linear travel per screw revolution)
$01=0.1 \mathrm{in} / \mathrm{rev}(2.54 \mathrm{~mm} / \mathrm{rev})$
$02=0.2 \mathrm{in} / \mathrm{rev}(5.08 \mathrm{~mm} / \mathrm{rev})$
$05=0.5 \mathrm{in} / \mathrm{rev}(12.7 \mathrm{~mm} / \mathrm{rev})$
$08=0.8 \mathrm{in} / \mathrm{rev}(20.3 \mathrm{~mm} / \mathrm{rev})$
D = Connections
F = Two 0.75 in NPT Ports, Front Facing (as viewed from rod end)
$B=$ Two 0.75 in NPT Ports, Back Facing (as viewed from rod end)
$R=$ Two 0.75 in NPT Ports, Right Facing (as viewed from rod end)
L= Two 0.75 in NPT Ports, Left Facing (as viewed from rod end)
$\mathrm{E}=$ Mounting
$\mathrm{N}=$ Threaded Front \& Rear Face, Metric
H = Threaded Front \& Rear Face, English
$\mathrm{F}=$ Standard Front Flange
$R=$ Standard Rear Flange
$\mathrm{G}=$ Metric Rear Clevis
C = English Rear Clevis
$J=$ Metric Rear Eye
K = English Rear Eye
F = Rod End Thread
M = Male, US Standard Thread
$A=$ Male, Metric Thread
F = Female, US Standard Thread
$B=$ Female, Metric Thread
GGG = Feedback Type
See page 89 for detailed information

H = Motor Stator
$1=1$ stack motor
$2=2$ stack motor
$3=3$ stack motor
I = Rated Voltage
$1=115$ Volt RMS
$3=230$ Volt RMS
$5=400$ Volt RMS
$6=460$ Volt RMS
$\mathrm{J}=$ Motor Poles
$8=8$ pole motor
KK $=\underset{\text { Vated Motor Speed at Rated }}{\text { Voltage }}$ Voltage
$30=3000$ RPM
MM = Mechanical Option ${ }^{1}$
AR = External anti-rotate assembly
$R B=$ Rear brake

NOTES:

1. For extended temperature operation consult factory for model number.

For options or specials not listed above or for extended temperature operation, please contact Exlar

EL100 Explosion-Proof Linear Actuators

EL100

Explosion-Proof Linear Actuators

This electromechanical system provides process engineers with a clean, fast, simple, and cost effective replacement for hydraulic actuation and a longer life alternative to pneumatic actuation. The roller screw technology manufactured by Exlar offer 15 times the travel life of rival ball screws and can carry higher loads. The compact design allows users to effectively replace hydraulic or air cylinders with an electromechanical actuator, while meeting all required capabilities of the application. Servo electric actuation reduces emissions, lowers energy consumption (80% system energy efficiency), and increases position control and accuracy-all leading to reduced cost.

The EL100 explosion-proof linear actuator offers a Class 1, Division 1, Groups B, C, D, and T3 rating. Additionally, it meets ATEX essential requirements and are in conformance with the EU ATEX Directive 2014/34/EU.

The EL Series linear actuators are compatible with nearly any manufacturer's resolver-based amplifier.

Features
T-LAM technology yielding 35\% increase in continuous motor torque over
traditional windings
Forces up to 2000 Ibs
Speeds up to 25 ips
Resolver feedback
Strokes up to 6 inches
8 pole motors
Rod end options
Several mounting configurations
Potted NPT connectors
Windings available from 24 VDC to 460 VAC rms
Class 180 in insulation, IP66S Standard

> * "Class I" means that flammable gases or vapors may be present in the air in quantities sufficient to produce explosive or ignitable mixtures. "Division 1" means that hazardous concentrations in the air may exist continuously, intermittently, or periodically under normal operating conditions. "Group B" allows for atmospheres containing hydrogen, gases, or vapors of equivalent hazard, such as manufactured gas. "Group C" allows for atmospheres containing ethyl-ether vapors, ethylene or cyclo propane. "Group D" allows for atmospheres containing gasoline, hexane, naphtha, benzene, butane, alcohol, acetone, benzol, lacquer solvent vapors or natural gas. EL Series actuators are not rated for operation in atmospheres containing acetylene. Temperature classification defines the maximum surface temperature the product will reach at full load. $T 3=200^{\circ} \mathrm{C}, \mathrm{T} 3 \mathrm{~A}=180^{\circ} \mathrm{C}$, $\mathrm{T4}=135^{\circ} \mathrm{C}$.

Technical Characteristics	
Frame Sizes in (mm)	$4(100)$
Screw Leads in (mm)	$0.1(2.54), 0.2(5.08), 0.5(12.7)$
Standard Stroke Lengths in (mm)	$5.9(150)$
Force Range	up to $4081 \mathrm{lbf-in}(18 \mathrm{kN})$
Maximum Speed	up to $37.5 \mathrm{in} / \mathrm{sec}(953 \mathrm{~mm} / \mathrm{s})$

Operating Condifions and Usage		
Accuracy:		
Screw Lead Error	in/ft $(\mu \mathrm{m} / 300 \mathrm{~mm})$	$0.001(25)$
Screw Travel Variation	in/tt $(\mu \mathrm{m} / 300 \mathrm{~mm})$	$0.0012(30)$
Screw Lead Backlash	in (mm)	0.004 maximum
Ambient Conditions:		
Ambient Temperature	${ }^{\circ} \mathrm{C}$	-29 to 93
Storage Temperature	${ }^{\circ} \mathrm{C}$	-54 to 93
IP Rating		IP66S
Shack		10 g
Vibration		5 grms, 5 to 2000 hz

Product Features

EL100 Explosion-Proof Linear Actuators

Industries and Applications

Process Control
Turbine fuel flow
Chemical process plants
Fuel distribution systems
Shipbound fuel management
Valve control
Damper control Fuel Skids

Silos

Defense

Weapons room
Material Handling
Printing presses

Automotive

Engine test stands
Paint booths

The EL100 actuator is another simple, clean, and cost effective replacement for hydraulics meeting Class 1, Division 1, Group B, C, D, and T3 as well as ATEX requirements.

Mechanical Specifications

Motor Stacks		2 Stacks		
Screw Lead Designator		01	02	05
Screw Lead	in	0.1	0.2	0.5
	mm	2.54	5.08	12.7
Continuous Force (Motor Limited)	lbf	2011	1005	402
	N	8943	4472	1789
Max Velocity	in/sec	6.66	13.33	33.33
	$\mathrm{mm} / \mathrm{sec}$	169.33	338.58	846.58
Friction Torque (standard screw)	in-lbf	1.7		
	N-m	0.19		
Friction Torque (preloaded screw)	in-lbf	3.5		
	$\mathrm{N}-\mathrm{m}$	0.39		
Back Drive Force	Ibf	180	80	40
	N	800	360	180
Min Stroke	in	3		
	mm	75		
Max Stroke	in	18		
	mm	450		
C_{a} (Dynamic Load Rating)	lbf	5516	5800	4900
	N	24,536	25,798	21,795
Inertia	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2}$	0.002829		
	$\mathrm{Kg}-\mathrm{m}^{2}$	0.000003196		
Weight	lb	7.65		
	Kg	3.47		

[^0]Electrical Specifications

Motor Stator		2A8-10	2B8-25	2C8-40	218-40	238-40	258-40	268-40
Bus Voltage	Vrms	24 VDC	48 VDC	120 VDC	115 VAC	230 VAC	400 VAC	460 VAC
Speed @ Bus Voltage	rpm	1,000	2,500	4,000	4,000	4,000	4,000	4,000
RMS SINUSOIDAL COMMUTATION DATA								
Continuous Motor Torque$\left(25^{\circ} / 80^{\circ} \mathrm{C}\right)$	lbf-in	35.2/24.3	35.9/24.8	36.5/25.2	39.6/27.3	40.0/27.6	39.5/27.3	39.9/27.6
	N-m	3.98/2.75	4.06/2.80	4.12/2.85	4.47/3.09	4.52/3.12	4.46/3.08	4.51/3.11
Torque Constant	lbf-in	1.7	1.7	2.6	3.2	6.6	11.6	13.2
	$\mathrm{N}-\mathrm{m} / \mathrm{A}$	0.19	0.19	0.30	0.37	0.75	1.31	1.50
Continuous Current Rating $\left(25^{\circ} / 80^{\circ} \mathrm{C}\right)$	A	23.1/15.9	23.6/16.3	15.6/10.7	13.6/9.4	6.8/4.7	3.8/2.6	3.4/2.3
Peak Current Rating ($25^{\circ} / 80^{\circ} \mathrm{C}$)	A	46.2/31.9	47.1/32.5	31.1/21.5	27.3/18.8	13.5/9.3	7.6/5.3	6.7/4.7
O-PEAK SMUSOIDAL COMMUTATION DATA								
Continuous Motor Torque ($25^{\circ} / 80^{\circ} \mathrm{C}$)	lbf-in	35.2/24.3	35.9/24.8	36.5/25.2	39.6/27.3	40.0/27.6	39.5/27.3	39.9/27.6
	N-m	3.98/2.75	4.06/2.80	4.12/2.85	4.47/3.09	4.52/3.12	(4.46/3.08)	(4.51/3.11)
Torque Constant	lbf-in/A	1.2	1.2	1.9	2.3	4.7	8.2	9.4
	$\mathrm{N}-\mathrm{m} / \mathrm{A}$	0.14	0.14	0.21	0.26	0.53	0.92	1.06
Continuous Current Rating $\left(25^{\circ} / 80^{\circ} \mathrm{C}\right)$	A	32.7/22.6	33.3/23.0	22.0/15.2	19.3/13.3	9.5/6.6	5.4/3.7	4.8/3.3
Peak Current Rating ($25^{\circ} / 80^{\circ} \mathrm{C}$)	A	65.4/45.1	66.7/46.0	44.0/30.4	38.6/26.6	19.1/13.2	10.8/7.5	9.5/6.6
MOTOR STATOR DATA								
Voltage Constant @ $25^{\circ} \mathrm{C}$ (Ke)	Vrms/Krpm	11.6	11.6	17.9	22.1	45.2	78.9	90.4
	Vpk/Krpm	16.5	16.5	25.3	31.3	64.0	111.6	127.9
Pole Configuration		8	8	8	8	8	8	8
Resistance (L-L)	Ohms	0.10	0.1	0.2	0.30	1.2	3.8	4.86
Inductance (L-L)	mH	0.75	0.8	1.9	2.93	12.2	37.2	48.9
Brake Inertia	lbf-in-sec ${ }^{2}$	0.00047						
	$\mathrm{kg}-\mathrm{cm}^{2}$	0.53						
Brake Current @24 VDC +/- 10\% A		0.5						
Brake Holding Torque - Dry	lbf-in	70						
	Nm/A	8						
Brake Engage/Disengage Time	ms	25/50						
Mechanical Time Constant (tm)	ms	1.4	1.3	1.3	1.1	1.1	1.1	1.1
Electrical Time Constant (te)	ms	7.2	7.9	8.2	9.9	10.1	9.9	10.1
Frictional Torque	lbf-in	2.22	2.22	2.22	2.22	2.22	2.22	2.22
	N -m	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Insulation Class		180 (H)						
Ambient Temperature Rating		$-29^{\circ} \mathrm{C}$ to $93^{\circ} \mathrm{C}$						
CSA/ATEX Temperature Class		T3, $200^{\circ} \mathrm{C}$ Maximum Allowable Surface Temperature						

For amplifiers using peak sinusoidal ratings, multiply RMS sinusoidal Kt by 0.707 , and peak current by 1.414 . Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} / 80^{\circ} \mathrm{C}$ ambient.

EL100 Explosion-Proof Linear Actuators

Performance Curves

The below speed vs. force curves represent approximate continuous thrust ratings at indicated linear speed. Different types of servo amplifiers offer varying motor torque and, thus,
varying actuator thrust. These values are at constant velocity and do not account for motor torque required for acceleration.

DEFINITIONS:

Continuous Force: The linear force produced by the actuator at continuous motor torque.

Max Velocity: The linear velocity that the actuator will achieve at rated motor rpm.

Friction Torque (standard screw): Amount of torque required to move the actuator when not coupled to a load.

Friction Torque (preloaded screw): Amount of torque required to move the actuator when not coupled to a load.

Back Drive Force: Amount of axial force applied to the rod end of the actuator that will produce motion with no power applied to the actuator.

Min Stroke: Shortest available stroke length.

Max Stroke: Longest available stroke length.
C_{a} (Dynamic Load Rating): A design constant used when calculating the estimated travel life of the roller screw.

Inertia (zero stroke): Base inertia of an actuator with zero available stroke length.

Inertia Adder (per inch of stroke): Inertia per inch of stroke that must be added to the base (zero stroke) inertia to determine the total actuator inertia.

Weight (zero stroke): Base weight of an actuator with zero available stroke length.

Weight Adder (per inch of stroke): Weight adder inch unit of stroke that must be added to the base (zero stroke) weight to determine the total actuator weight.

EL100 Explosion-Proof Linear Actuators

Dimensions

Front Flange or Clevis Mount

Rod End Options

	A	B	ØC	D	ØE	F	Male "M" Inch	Male "A" Metric	Female "F" Inch
EL100 in (mm)	$1.250(31.8)$	$0.625(17.0)$	$0.787(20.0)$	$0.281(7.1)$	$0.725(18.4)$	$1.000(25.4)$	$1 / 2-20$ UNF $-2 A$	M $16 \times 1.56 \mathrm{~g}$	$1 / 2-20$ UNF $-2 B$

[^1]
EL100 Explosion-Proof Linear Actuators

Terminal Box Wiring

EL100 = Model Series
CC= Stroke Length
$06=5.9$ inch (150 mm)
DD = Roller Screw Lead (Linear Travel per Screw Revolution)
$01=0.1 \mathrm{in} / \mathrm{rev}(2.54 \mathrm{~mm} / \mathrm{rev})$
$02=0.2 \mathrm{in} / \mathrm{rev}(5.08 \mathrm{~mm} / \mathrm{rev})$
$05=0.5 \mathrm{in} / \mathrm{rev}(12.7 \mathrm{~mm} / \mathrm{rev})$
$\mathrm{E}=$ Connections
$S=$ Terminal strips with 3/4" NPT port access, single row

F $=$ Mounting
$H=$ Threaded front and rear face, US standard thread
$\mathrm{N}=$ Threaded front and rear face, metric thread
$F=$ Standard front flange
$C=$ Standard rear clevis
$R=$ Rear flange
G = Rod End
M = Male, US standard thread
A = Male, metric thread
$\mathrm{F}=$ Female, US standard thread
$B=$ Female, metric thread

For options or specials not listed above or for extended temperature operation, please contact Exlar

HHH = Controller Feedback Option XX1 = Custom Feedback. Resolver only. Consult Exlar
AB6 = Allen-Bradley/Rockwell - standard resolver
AM3 = Advanced Motion Control - standard resolver
AP1 = API Controls - standard resolver
BD2 = Baldor - standard resolver
BM2 = Baumueller - standard resolver
BR1 $=$ B\&R Automation
CT5 = Control Techniques - standard resolver
CO2 $=$ Copely Controls - standard resolver
DT2 = Delta Tau Data Systems - standard resolver
EL1 = Elmo Motion Control - standard resolver
EX4 = Exlar - standard resolver
IF1 = Infranor - standard resolver
IN6 = Indramat/Bosch-Rexroth - standard resolver
JT1 = Jetter Technologies - standard resolver
KM5 $=$ Kollmorgen/Danaher - standard resolver
LZ5 = Lenze/AC Tech - standard resolver
MD1 = Modicon - standard resolver
MG1 = Moog - standard resolver
MN4 = Momentum - Standard Resolver
MX1 = Metronix - standard resolver
OR1 = Ormec - standard resolver
PC7 = Parker - standard resolver

- European only

PCO = Parker - standard resolver - US only
PS3 = Pacific Scientific - standard resolver
SM2 = Siemens - standard resolver
SW1 = SEW/Eurodrive - standard resolver
WD1 = Whedco/Fanuc - standard resolver

I = Motor Stacks
$2=2$ stack motor
$\mathrm{J}=$ Rated Voltage
$\mathrm{A}=24 \mathrm{VDC}$
$\mathrm{B}=48 \mathrm{VDC}$
$C=120 \mathrm{VDC}$
$1=115$ Volt RMS
$3=230$ Volt RMS
$5=400$ Volt RMS
$6=460$ Volt RMS
K = Motor Poles
$8=8$ Pole Motor

LL = Rated Motor Speed at Rated

Voltage
$40=4000$ RPM
MM $=$ Mechanical Options ${ }^{1}$
AR = External anti-rotate assembly (requires
flange mount option)
$R B=$ Rear brake
NN = Haz Loc Temp Rating
$\mathrm{T} 3=200^{\circ} \mathrm{C}$ max allowable surface temperature

NOTES:

1. For extended temperature operation consult factory for model number.

ER120 Explosion-Proof Motors

ER120 Series

Explosion-Proof Rotary Motor and Gearmotor

For hazardous duty environments with constant exposure to flammable gasses or vapors* Exlar's ER Series rotary explosionproof motors and gearmotors provide an excellent solution. Exlar's motors utilizing T-LAM technology, an innovative segmented winding, have been designed for efficiency, power and durability and provide a very high torque-to-size ratio when compared to other suppliers' motors.

The gearmotor comprises a brushless permanent magnet motor optimized for use with an integral planetary gear set. Through the uniform load sharing of several gears acting in concert, planetary gear heads are a very compact, reliable solution providing high torque, low backlash and low maintenance.

The ER Series motors are compatible with nearly any manufacturers' resolver-based amplifier.

The ER Series actuators are ideal for operating quarter turn or multi turn valves or shaft driven dampers in hazardous environments. These actuators are directly coupled shaft-to-shaft, eliminating ungainly mechanisms needed by the linear motion of pneumatics. Our compact T-LAM servo motors outperform any standard motor, providing excellent continuous modulating service.

* ER Series motors are rated for Class I, Division 1, Groups B, C and D. "Class I" means that flammable gasses or vapors may be present in the air in quantities sufficient to produce explosive or ignitable mixtures. "Division 1" means that hazardous concentrations in the air may exist continuously, intermittently, or periodically under normal operating conditions. "Group B" allows for atmospheres containing hydrogen, or gasses (or vapors) of equivalent hazard, such as manufactured gas. "Group C" allows for atmospheres containing ethyl-ether vapors, ethylene or cyclo propane. "Group D" allows for atmospheres containing gasoline, hexane, naphtha, benzene, butane, alcohol, acetone, benzol, lacquer solvent vapors or natural gas. ER Series motors are not rated for operation in atmospheres containing acetylene.

	Technical Characteristics
Frame Sizes	4.72 in $(120 \mathrm{~mm})$
Torque Range	up to 4696 lbf -in $(530 \mathrm{Nm})$
Maximum Speed	3000 rpm

Operating Condifions and Usage		
Ambient Conditions:		
Ambient Operating	${ }^{\circ} \mathrm{C}$	-29 to 93
Temperature	${ }^{\circ} \mathrm{F}$	-20 to 199
Storage Temperature	${ }^{\circ} \mathrm{C}$	-54 to 93
IP Rating		IP65S

Features
T-LAM technology yielding 35% increase in continuous motor torque over traditional windings
Resolver feedback
8 pole motors
Rod end options
1, 2, or 3 stack motor availability compatible with nearly any resolver based
servo amplifier
Several mounting configurations
Potted NPT leads
Windings from 24 VDC to 460 VAC rms
Class 180 H insulation system

ER120 Explosion-Proof Motors

Product Features

Industries and Applications

Process Control

Valve control
Damper control
Turbine control
Choke valves
Fuel control
Plunger pumps

Automotive

Paint booths
Fuel control
Engine test stands

Defense

Weapons room

In hazardous duty environments where exposure to flammable gasses or vapors may be ever present, ER Series explosion proof motors and gear motors stand up to the challenge making them perfect for paint booths and printing presses.

With life counts in the hundreds of millions of cycles, response times in milliseconds and accuracy of 0.10%, Exlar offers superior electric control valve actuation replacing other traditional electric, pneumatic, and hydraulic actuators.

Material Handling

Printing presses

Electrical and Mechanical Specifications

Motor Stator		1 A8	$1 \mathrm{B8}$	118	138	158	168	2A8	2B8	238	258	268	338	358	368
Bus Voltage	Vrms	24 VDC	48 VDC	115	230	400	460	24 VDC	48 VDC	230	400	460	230	400	460
Speed @ Bus Voltage	rpm	300	750					300	750		3000			3000	
RMS SINUSOIDAL COMMUTATION DATA															
Continuous Motor Torque	Ibf-in	71.8	71.8	74.1	74.1	74.3	74.1	120.5	120.5	123.6	121.4	123.8	172.3	168.9	176.9
	N -m	8.11	8.11	8.37	8.37	8.39	8.37	13.61	13.61	13.96	13.72	13.96	19.46	19.09	19.98
Peak Motor Torque	Ibf-in	143.6	143.6	148.2	148.2	148.6	148.2	241.0	241.0	247.2	242.8	247.2	344.5	337.8	353.7
	$\mathrm{N}-\mathrm{m}$	16.22	16.22	16.74	16.74	16.79	16.74	27.23	27.23	27.93	27.43	27.93	38.93	38.17	39.96
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	$\mathrm{lbf-in} / \mathrm{A}$	5.3	5.3	4.3	8.7	15.7	17.3	5.3	5.3	8.7	15.8	17.3	8.5	15.8	17.5
	$\mathrm{N}-\mathrm{m} / \mathrm{A}$	0.60	0.60	0.49	1.00	1.80	2.00	0.60	0.60	1.00	1.80	2.00	1.00	1.80	2.00
Continuous Current Rating	g A	15.2	15.2	19.1	9.5	5.3	4.8	25.5	25.5	15.9	8.6	8.0	22.7	11.9	11.3
Peak Current Rating	A	30.4	30.4	38.2	19.1	10.6	9.5	51.0	51.0	31.8	17.1	15.9	45.4	23.8	22.5
O-PEAK SINUSOIDAL COMMUTATION															
Continuous Motor Torque	Ibf-in	71.8	71.8	74.1	74.1	74.3	74.1	120.5	120.5	123.6	121.4	123.6	74.1	74.1	74.1
	N-m	8.11	8.11	8.37	8.37	8.39	8.37	13.61	13.61	13.96	13.72	13.96	8.37	8.37	8.37
Peak Motor Torque	Ibf-in	143.6	143.6	148.2	148.2	148.6	148.2	241.0	241.0	247.2	242.8	247.2	344.5	337.8	353.7
	N-m	16.22	16.22	16.74	16.74	16.79	16.74	27.23	27.23	27.93	27.43	27.93	38.93	38.17	39.96
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	lbf-in/A	3.7	3.7	3.1	6.1	11.1	12.3	3.7	3.7	6.1	11.2	12.3	6.0	11.2	12.4
	$\mathrm{N}-\mathrm{m} / \mathrm{A}$	0.42	0.42	0.35	0.70	1.25	1.39	0.42	0.42	0.70	1.27	1.39	0.68	1.27	1.40
Continuous Current Rating	g A	21.5	21.5	27.0	13.5	7.5	6.7	36.1	36.1	22.5	12.1	11.3	32.1	16.9	15.9
Peak Current Rating A		43.0	43.0	54.0	27.0	15.0	13.5	72.1	72.1	45.0	24.2	22.5	64.2	33.7	31.9
MOTOR DATA															
Voltage Constant (Ke) (+\|-10\% @ $25^{\circ} \mathrm{C}$)	Vrms/Krpm	36.1	36.1	29.6	59.2	106.9	118.5	36.1	36.1	59.2	108.2	118.5	58.0	108.2	119.8
	Vpk/Krpm	51.0	51.0	41.9	83.8	151.2	167.6	51.0	51.0	83.8	153.0	167.6	82.0	153.0	169.4
Pole Configuration		8													
$\begin{aligned} & \text { Resistance (L-L) } \\ & \left(+/-5 \% @ 25^{\circ} \mathrm{C}\right) \end{aligned}$	Ohms	0.31	0.31	0.20	0.80	2.60	3.21	0.13	0.13	0.34	1.17	1.35	0.20	0.72	0.81
$\begin{aligned} & \text { Inductance (L-L) } \\ & (+/-15 \%) \end{aligned}$	mH	4.8	4.8	3.3	13.0	42.4	52.1	2.3	2.3	6.3	21.1	25.3	4.0	13.1	17.1
Armature Inertia (+/-5\%)	lbf-in-sec ${ }^{2}$	0.00538						0.00818					0.01097		
	$\mathrm{Kg}-\mathrm{cm}^{2}$	6.082						9.242					12.400		
Brake Inertia	lbf-in-sec ${ }^{2}$	0.00030													
	$\mathrm{Kg}-\mathrm{cm}^{2}$	0.339													
Brake Current @ $24 \mathrm{VDC}(+\mid-10 \%)$	A	1.0													
Brake Holding Torque - Dry	Ibf-in	177													
	($\mathrm{N}-\mathrm{m}$)	20													
Brake Engage/ Disengage Time	ms	13/50													
Mechanical Time Constant ${ }^{T M}$	ms	0.94	0.94	0.91	0.91	0.9	0.91	0.58	0.58	0.57	0.59	0.57	0.47	0.47	0.45
Electrical Time Constant (te)	ms	15.73	15.73	16.26	16.26	16.34	16.25	18.41	18.41	18.72	18.06	18.72	20.08	20.19	21.16
Friction Torque	Ibf-in	1.39	1.39	1.39	1.39	1.39	1.39	1.75	1.75	1.75	1.75	1.75	2.25	2.25	2.25
	N -m	0.157	0.157	0.157	0.157	0.157	0.157	0.197	0.197	0.197	0.197	0.197	0.254	0.254	0.254
Insulation Class		180 (H)													
Ambient Temperature Rating		$-29^{\circ} \mathrm{C}$ to $93^{\circ} \mathrm{C}$													
Insulation System Voltage Rating		T4, $135^{\circ} \mathrm{C}$ Maximum Allowable Surface Temperature													

Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient

ER120 Explosion-Proof Motors

Gearmotor Data

	1 Stack Motor		2 Stack Motor		3 Stack Motor	
SLG Armature Inertia* Ibf-in-sec ${ }^{2}\left(\mathrm{Kg}^{2} \mathrm{~cm}^{2}\right)$	0.00538 (6.085)		0.00820 (9.274)		0.01102 (12.464)	
GEARING REFLECTED INERTIA	SINGLE REDUCTION			DOUBLE REDUCTION		
	Gear Stages	lbf-in-sec ${ }^{2}$	$\left(\mathrm{Kg}-\mathrm{cm}^{2}\right)$	Gear Stages	lbf-in-sec ${ }^{2}$	$\left(\mathrm{Kg}-\mathrm{cm}^{2}\right)$
	4:1	0.000851	(0.961)	16:1	0.000510	(0.576)
	5:1	0.000557	(0.629)	20:1, 25:1	0.000344	(0.389)
	10:1	0.000145	(0.164)	40:1, 50:1, 100:1	0.000092	(0.104)
Backlash at 1% rated torque:	10 Arc minutes (Efficiency: Single reduction 91\%)			13 Arc minutes (Efficiency: Double Reduction: 86\%)		

* Add armature inertia to gearing inertia for total ER geared system inertia

Gearmotor General

 Performance SpecificationsTwo torque ratings for the ER Series Gearmotors are given in the table below. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size ER Series Gearmotor. This IS NOT the rated output torque of the motor multiplied by the ratio of the reducer.

It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system, including the amplifier, do not allow these values to be exceeded.

The right hand columns give the output torque at the indicated speed which will result in 10,000 hour (L10). The setup of the system, including the amplifier, will determine the actual output torque and speed.

Output Torque Ratings - Mechanical

	Maximum ER120 Ratio	Ollowable Output Torque	Output Torque @ Speed for 10,000 Hour Life - Ibf-in (Nm)	
		1000 RPM	2000 RPM	3000 RPM
$4: 1$	$4696(530.4)$	$1392(157.3)$	$1132(127.9)$	$1000(112.9)$
$5: 1$	$4066(459.4)$	$1445(163.3)$	$1175(132.8)$	$1040(117.5)$
$10: 1$	$2545(287.5)$	$1660(187.6)$	$1350(152.6)$	$1200(135.6)$
$16: 1$	$4696(530.4)$	$2112(238.6)$	$1714(193.0)$	$1518(171.0)$
$20: 1$	$4696(530.4)$	$2240(253.1)$	$1840(207.9)$	$1620(183.0)$
$25: 1$	$4066(459.4)$	$2350(265.5)$	$1900(214.7)$	$1675(189.2)$
$40: 1$	$4696(530.4)$	$2800(316.4)$	$2240(253.1)$	$2000(225.9)$
$50: 1$	$4066(459.4)$	$2900(327.7)$	$2350(265.5)$	$2100(237.3)$
$100: 1$	$2545(287.5)$	$2500(282.5)$	$2500(282.5)$	$2400(271.2)$

Radial Load and Bearing Life

RPM	ER120 lbf (N)	RPM	ER120 (Gear) Ibf (N)
50	$579(2576)$	50	$1223(5440)$
100	$460(2046)$	100	$971(4318)$
250	$339(1508)$	250	$715(3181)$
500	$269(1197)$	500	$568(2525)$
1000	$214(952)$	1000	$451(2004)$
3000	$148(658)$	3000	$218(970)$

Side load ratings shown below are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Visit www.exlar.com for full details on radial load and bearing life.

Motor and Gearmotor Weight

ER120	Motor	Gearmotor	
	Motor Weight lb (kg)	1 Stage lb (kg)	2 Stage lb (kg)
1 Stack	$29.9(13.56)$	$37.7(17.10)$	$43.2(19.60)$
2 Stack	$37.4(16.96)$	$45.2(20.50)$	$50.7(23.00)$
3 Stack	$44.8(20.32)$	$52.7(23.90)$	$58.3(26.45)$

[^2]
ER120 Explosion-Proof Motors

Speed/Torque Curves

1 Stack Motors

2 Stack Motors

Peak Torque
Continuous Torque Torque Rated at $80^{\circ} \mathrm{C}$

3 Stack Motors

For gearmotors, divide speed by gear ratio; multiply torque by gear ratio and effciency. Efficencies: 1 Stage $=0.91,2$ Stage $=0.86$ Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient.

Notes

ER120 Explosion-Proof Motors

Dimensions

Base Actuator

Gear Reduction		Dimension "A" Length mm (in)
Stages	Stacks	
0	1	$348.7(13.73)$
	2	$399.5(15.73)$

ER120 with Gear Reduction Option

ER120 Ordering Guide


```
ER = Model Series
ER = Explosion proof rotary actuator
AAA = Frame Size
120=120 mm
BBB = Gear Reduction Ratio
Single reduction ratio
004=4:1
005=5:1
010=10:1
Double reduction ratio (N/A on 075 mm}
016=16:1
020=20:1
025=25:1
040=40:1
050=50:1
100=100:1
C = Shaft Type
K= Keyed
R=Smooth/round
```

D = Connections
F = Two 0.75 in NPT Ports, Front Facing
(as viewed from rod end)
$B=$ Two 0.75 in NPT Ports, Back Facing
(as viewed from rod end)
$R=$ Two 0.75 in NPT Ports, Right Facing
(as viewed from rod end)
L = Two 0.75 in NPT Ports, Left Facing
(as viewed from rod end)
F = Brake Options
S = Standard no brake
B = Brake
GGG = Feedback Type
See page 89 for detailed information

HHH = Motor Stator, All 8 Pole

118=1 Stack	115 Vrms	$158=1$ Stack	400 Vrms
138 = 1 Stack	230 Vrms	$258=2$ Stack	
238 = 2 Stack		$358=3$ Stack	
$338=3$ Stack		168 = 1 Stack	460 Vrms
		$268=2$ Stack	
		$368=3$ Stack	

II = Speed Designations $30=3000 \mathrm{rpm}$

NOTES:

1. For extended temperature operation consult factory for model number.

Tritex II®AC and DC

TRITEX I® SERIES

FULLY INTEGRATED SERVO DRIVE/MOTOR/ACTUATOR
Linear or Rotary configurations
AC or DC powered models
Multiple networking options

Tritex II Linear
AC Actuator

Tritex II AC

No Compromising on Power, Performance or Reliability

With forces to approximately $3,225 \mathrm{lbf}(14 \mathrm{kN})$ continuous and $5,400 \mathrm{lbf}$ peak (24 kN), and speeds to $33 \mathrm{in} / \mathrm{sec}(800 \mathrm{~mm} / \mathrm{sec})$, the AC Tritex II linear actuators also offer a benefit that no other integrated product offers: POWER! No longer are you limited to trivial amounts of force, or speeds so slow that many motion applications are not possible. And the Tritex II with AC power electronics operates with maximum reliability over a broad range of ambient temperatures: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. The AC powered Tritex II actuators contain a 1.5 kW servo amplifier and a very capable motion controller. With standard features such as analog following for position, compound moves, move chaining, and individual force/ torque control for each move, the Tritex II Series is the ideal solution for most motion applications.

Tritex II Models

- T2X high mechanical capacity actuator
- R2M rotary motor
- R2G rotary gearmotor

Power Requirements

- AC Power 100V-240V, +/-10\%, single phase
- Built-in AC line filter
- Connections for external braking resistor

Feedback Types

- Analog Hall with 1000 count/motor rev resolution
- Incremental encoder with 8192 count resolution
- Absolute Feedback (analog hall with multi-turn, battery backup)

Connectivity

- Inernal terminals acessible through removable cover
- Threaded NPT ports

Technical Characteristics	
Frame Sizes in (mm)	$2.9(75), 3.5(90), 4.5(115)$
Screw Leads	$0.1(2), 0.2(5), 0.5(13), 0.75(19)$
Standard Stroke Lengths in (mm)	$3(75), 4(100), 6(150), 10(250), 12(300)$, $14(350), 18(450)$
Force Range	up to $3225 \mathrm{lbf}(14 \mathrm{kN})$
Maximum Speed	up to $33.3 \mathrm{in} / \mathrm{s}(846 \mathrm{~mm} / \mathrm{s})$

| Operating Conditions and Usage | |
| :--- | :--- | :--- |
| Accuracy: | |
| in/ft | |
| $(\mu \mathrm{m} / 300 \mathrm{~mm})$ | |$) 0.001(25)$

*Ratings for R2M075 at $40^{\circ} \mathrm{C}$, operation over $40^{\circ} \mathrm{C}$ requires de-rating. Ratings for R2M090 and R2M115 at $25^{\circ} \mathrm{C}$, operation over $25^{\circ} \mathrm{C}$ requires de-rating.
**Consult Exlar for extended temperature operation.

Tritex II AC Overview

Communications \& I/O

Digital Inputs:

10 to 30 VDC Opto-isolated

Digital outputs:

30 VDC maximum
100 mA continuous output Isolated

Analog Input AC:

$0-10 \mathrm{~V}$ or $+/-10 \mathrm{~V}$

$0-10 \mathrm{~V}$ mode, 12 bit resolution
+/-10V mode, 12 bit resolution on 90/115, 13 bit resolution on 75 assignable to Position, Velocity,
Torque, or Velocity Override commands.

Analog Output AC:

0-10V
12 bit resolution on 90/115, 11 bit resolution on 75

IA4 option:

4-20 mA input
16 bit resolution Isolated
Assignable to Position, Velocity, or Torque command
4-20 mA output
12 bit resolution
Assignable to Position, Velocity, Current, Temperature, etc

Standard Communications:

- 1 RS485 port, Modbus RTU, opto-isolated for programming, controlling and monitoring

The IO count and type vary with the actuator model and option module selected.

All models include isolated digital IO, and an isolated RS485 communication port when using Modbus RTU protocol.

Tritex II AC I/O					
	75/90/115 $\mathbf{~ m m}$ frame with SIO, EIP, PIO, TCP	$90 / 115 \mathrm{~mm}$ frame with IA4	75 mm frame with IA4	$90 / 115 \mathrm{~mm}$ frame with CAN	75 mm frame with CAN
Isolated digital inputs	8	8	4	8	4
Isolated digital outputs	4	4	3	4	3
Analog input, non isolated	1	1	0	0	0
Analog output, non isolated	1	1	0	0	0
Isolated 4-20ma input	0	1	1	0	0
Isolated 4-20ma output	0	1	1	0	0

Tritex II AC Overview

Product Features

1 - NPT Threaded Port via Adapter with Internal Terminals, $1 / 2^{\prime \prime}$ NPT

2 - Front flange and front flange* 3 -Rear clevis 4 - Side mount*, double side mount, metric side mount*, and metric double side mount
5 - Extended tie rods and metric extended tie rods 6 - Metric rear clevis 7 - Side trunnion and metric side trunnion 8 -Front flange and rear flange
9 - Male, metric thread 10 - Female, metric thread 11 - Male, US standard thread 12 - Female, US standard thread
13 - External anti-rotate 14 -Rear brake 15 -Protective Bellows

Industries and Applications

Hydraulic cylinder replacement
Ball screw replacement
Pneumatic cylinder replacement

Automotive

Clamping
Dispensing
Automated Assembly
Flexible Tooling
Food Processing
Depositing
Slicing
Diverters / Product Conveyance
Sealing

Process Control
Oil \& Gas Wellhead Valve Control
Pipeline Valve Control
Damper Control
Knife Valve Control
Chemical pumps
Entertainment / Simulation
Ride Motion Bases
Animatronics
Medical Equipment
Volumetric Pumps

Plastics

Forming
Part Eject
Core Pull
Material Handling
Robotic End Effectors
Edge Guiding

Exlar actuators can provide precision at high force loads for fluid dispensing in a medical environment.

Efficient food processing and packaging operations demand robust technologies that are powerful, durable, precise, and safe for food. Exlar products are ideal for these for harsh, high-capacity production environments

Mechanical Specifications
T2X075

		Stator	1 Stack	2 Stack	3 Stack
Lead		RPM @ 240 VAC	4000	3000	2000
0.1	Continuous Force	1 lbf (N)	$589(2,620)$	$990(4,404)$	NA
	Peak Force	lbf (N)	1,178 (5,240)	1,980 (8,808)***	NA
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	6.67 (169)	5.00 (127)	NA
	C_{a} (Dynamic Load Rating)	1 lbf (N)	5516 (24536)		NA
0.2	Continuous Force	1 lbf (N)	$334(1,486)$	$561(2,496)$	$748(3,327)$
	Peak Force	$\operatorname{lbf}(\mathrm{N})$	668 (2,971)	1,122 $(4,991)$	1,495 (6,650)
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	13.33 (339)	10.00 (254)	6.67 (169)
	C_{a} (Dynamic Load Rating)	$1 \mathrm{lbf}(\mathrm{N})$	5800 (25798)		
0.5	Continuous Force	1 lbf (N)	141 (627)	$238(1,059)$	317 (1,410)
	Peak Force	lbf (N)	$283(1,259)$	$475(2,113)$	633 (2,816)
	Max Speed	in/sec (mm/sec)	33.33 (847)	25.00 (635)	16.67 (423)
	C_{a} (Dynamic Load Rating)	1 lbf (N)	4900 (21795)		
Drive Current @ Continuous Force		Amps	3.1	3.8	3.6
Available Stroke Lengths		in (mm)	3 (76), 6 (150), 10 (254),12 (305), 14 (356), 18 (457)		
Inertia (zero stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{Kg}-\mathrm{m}^{2}$	0.002655 (0.000003000)	002829 (0.000003196)	0.003003 (0.0000033963)
Inertia Adder (per inch of stroke)		lb -in-s $\mathrm{s}^{2} / \mathrm{in} / \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.0001424 (0.0000001609)		
Approximate Weight		lb (kg)	10.8 (4.9) for 3 inch stroke, 1 stack. Add $1.1(0.5)$ per inch of stroke. Add $1.1(0.5)$ per motor stack. Add $.8(0.4)$ for brake.		
Operating Temperature Range ${ }^{\text {- }}$			-20 C to $65 \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)		
Continuous AC Input Current"		Amps	4.3	4	3.6

* Ratings based on $40^{\circ} \mathrm{C}$ conditions.
*** T2X peak force for 0.1 inch lead is $2073 \mathrm{lbf}(9221 \mathrm{~N}$).

T2X090

		Stator	1 Stack	2 Stack	3 Stack
Lead		RPM @ 240 VAC	4000	4000	3000
0.1	Continuous Force	lbf (N)	1,130 (5062)	1,488 (6619)	NA
	Peak Force	lbf (N)	2,260 (10053)	2,700 (12010)***	NA
	Max Speed	in/sec (mm/sec)	6.67 (169)	6.67 (169)	NA
	C_{a} (Dynamic Load Rating)	lbf (N)	5516 (24536)		NA
0.2	Continuous Force	lbf (N)	640 (2847)	843 (3750)	1,113 (4951)
	Peak Force	lbf (N)	1,281 (5698)	1,687 (7504)	2,225 (9897)
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	13.33 (338)	13.33 (338)	10.00 (254)
	C_{a} (Dynamic Load Rating)	lbf (N)	5800 (25798)		
0.5	Continuous Force	lbf (N)	271 (1205)	357 (1588)	471 (2095)
	Peak Force	lbf (N)	542 (2410)	714 (3176)	942 (4190)
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	33.33 (846)	33.33 (846)	25.00 (635)
	C_{a} (Dynamic Load Rating)	lbf (N)	4900 (21795)		
Drive Current @ Continuous Force		Amps	5.7	7.5	7.5
Available Stroke Lengths		in (mm)	3 (75), 6 (150), 10 (254), 12 (300), 18 (450)		
Inertia (zero stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{Kg}-\mathrm{m}^{2}$	0.002655 (0.000003000)	002829 (0.000003196)	0.003003 (0.0000033963)
Inertia Adder (per inch of stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in} / \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.0001424 (0.0000001609)		
Approximate Weight		$\mathrm{lb}(\mathrm{kg})$	$14(6.35)$ for 3 inch stroke, 1 stack. Add 1 (0.5) per inch of stroke. Add 3 (1.4) per motor stack. Add 3 (1.4) for brake.		
Operating Temperature Range ${ }^{\text {- }}$		-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Continuous AC Input Current"		Amps	6.3	6.3	6.3

* Ratings based on $25^{\circ} \mathrm{C}$ conditions.
*** T2X peak force for 0.1 inch lead is $2700 \mathrm{lbf}(12010 \mathrm{~N})$.

Tritex II AC Linear

T2X115

		Stator	1 Stack	2 Stack	3 Stack
Lead		RPM @ 240 VAC	3000	2000	1500
0.1	Continuous Force	lbf (N)	2,060 $(9,163)$	3,224 (14,341)	NA
	Peak Force	lbf (N)	4,120 $(18,327)$	5,400 (24,020)***	NA
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	5.00 (127)	3.33 (84)	NA
	C_{a} (Dynamic Load Rating)	lbf (N)	7900 (35141)		NA
0.2	Continuous Force	lbf (N)	1,177 (5,235)	1,843 (8,198)	2,380 (10,586)
	Peak Force	lbf (N)	2,354 (10,471)	$3,685(16,392)$	4,760 (21,174)
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	10.00 (254)	6.67 (169)	5.00 (127)
	$\mathrm{C}_{\text {a }}$ (Dynamic Load Rating)	lbf (N)	8300 (36920)		
0.5	Continuous Force	lbf (N)	$530(2,358)$	$829(3,688)$	1,071 (4,764)
	Peak Force	lbf (N)	1,059 (4711)	1,658 (7,375)	2,142 (9,528)
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	25.00 (635)	16.67 (423)	12.50 (317)
	$\mathrm{C}_{\text {a }}$ (Dynamic Load Rating)	lbf (N)	7030 (31271)		
0.75	Continuous Force	lbf (N)	353 (1,570)	$553(2,460)$	$714(3,176)$
	Peak Force	lbf (N)	$706(3,140)$	1,106 (4,920)	1,428 (6,352)
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	37.5 (953)	25 (635)	17.75 (450)
	$\mathrm{C}_{\text {a }}$ (Dynamic Load Rating)	lbf (N)	6335 (28179)		
Drive Current @ Continuous Force		Amps	8.5	8.5	8.5
Available Stroke Lengths		in (mm)	$4 \text { (102), } 6 \text { (150), } 10(254), 12(300), 18(450)$		
Inertia (zero stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{Kg}-\mathrm{m}^{2}$	0.01132 (0.000012790)	0.01232 (0.00001392)	$0.01332(0.00001505)$
Inertia Adder (per inch of stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in} / \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.0005640 (0.0000006372)		
Approximate Weight		$\mathrm{lb}(\mathrm{kg})$	34 (15.5) for 6 inch stroke, 1 stack. Add 2 (1) per inch of stroke. Add 8 (4) per motor stack. Add 4 (2) for brake.		
Operating Temperature Range*			-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)		
Continuous AC Input Current"		Amps	8.3	8.3	8.3

[^3]
Rear Brake Current Draw

T2X075	0.50 Amps @ 24 VDC
T2X090	0.67 Amps @ 24 VDC
T2X115	0.75 Amps @ 24 VDC

DEFINITIONS:

Continuous Force: The linear force produced by the actuator at continuous motor torque.
Peak Force: The linear force produced by the actuator at peak motor torque.

Max Speed: The maximum rated speed produced by the actuator at rated voltage.
C_{a} (Dynamic Load Rating): A design constant used in calculating the estimated travel life of the roller screw.

Estimated Service Life

The L_{10} expected life of a roller screw linear actuator is expressed as the linear travel distance that 90% of properly maintained roller screws are expected to meet or exceed. For higher than 90% reliability, the result should be multiplied by the following factors: $95 \% \times 0.62 ; 96 \% \times 0.53 ; 97 \% \times 0.44 ; 98 \% \times 0.33 ; 99 \% \times 0.21$. This is not a guarantee; these charts should be used for estimation purposes only.

The underlying formula that defines this value is: Travel life in millions of inches, where:

$$
\begin{aligned}
& \begin{array}{l}
C_{\mathrm{a}}=\text { Dynamic load rating (lbf) } \\
\mathrm{F}_{\mathrm{cml}}=\text { Cubic mean applied load (lbf) } \\
\ell=\text { Roller screw lead (inches) }
\end{array} \quad \mathrm{L}_{10}=\binom{\mathrm{C}_{\mathrm{a}}}{\mathrm{~F}_{\mathrm{cml}}}^{3} \times \\
& \text { All curves represent properly lubricated and maintained } \\
& \text { actuators. }
\end{aligned}
$$

Speed vs. Force Curves

Temperature Derating

The speed/torque curves are based on $25^{\circ} \mathrm{C}$ ambient conditions. The actuators may be operated at ambient temperatures up to $65^{\circ} \mathrm{C}$. Use the curve (shown right) for continuous torque/force deratings above $25^{\circ} \mathrm{C}$.

Tritex II AC Linear

Speed inch/sec (mm/sec)

**T2X peak force for 0.1 inch lead is $2073 \operatorname{lbf}(9221 \mathrm{~N})$.

[^4]
Tritex II AC Linear

Speed inch/sec ($\mathrm{mm} / \mathrm{sec}$)

*Test data derived using NEMA recommended aluminum heatsink $10 " \times 10 " \times 3 / 8$ " at $25^{\circ} \mathrm{C}$ ambient.

Tritex II AC Linear

**T2X peak force for 0.1 inch lead is $5400 \mathrm{lbf}(24020 \mathrm{~N})$.

[^5]
Options

AR = External Anti-rotate Assembly

This option provides a rod and bushing to restrict the actuator rod from rotating when the load is not held by another method. Shorter actuators have single sided anti-rotation attachments. Longer lengths require attachments on both sides for proper operation. For AR dimensions, see page 46.

RB = Rear Electric Brake

This option provides an internal holding brake. The brake is spring activated and electrically released.

PB = Protective Bellows

This option provides an accordion style protective bellows to protect the main actuator rod from damage due to abrasives or other contaminants in the environment in which the actuator must survive. The standard material of this bellows is S 2 Neoprene Coated Nylon, Sewn Construction. This standard bellows is rated for environmental temperatures of -40 to 250 degrees F. Longer strokes may require the main rod of the actuator to be extended beyond standard length. Not available with extended tie rod mounting option. Please contact your local sales representative.

Tritex II AC Linear

Dimensions

T2X075 Double Side Mount or Extended Tie Rod Mount

T2X075 Side Trunnion Mount or Rear Clevis Mount

T2X075 Front, Rear, or Front and Rear Flange Mount

DIM	3 in $(75 \mathrm{~mm})$ stroke in (mm)	6 in $(150 \mathrm{~mm})$ stroke in (mm)	10 in $(250 \mathrm{~mm})$ stroke in (mm)	12 in $(300 \mathrm{~mm})$ stroke in (mm)	14 in $(350 \mathrm{~mm})$ stroke in (mm)	18 in $(450 \mathrm{~mm})$ stroke in (mm)
A	$11.98(304.3)$	$14.45(367.0)$	$18.95(481.3)$	$20.95(532.1)$	$22.95(582.9)$	$26.95(684.5)$
B	$6.15(156.2)$	$8.62(218.9)$	$13.12(333.2)$	$15.12(384.0)$	$17.12(434.8)$	$21.12(536.4)$
C	$5.38(136.7)$	$8.00(203.2)$	$10.00(254.0)$	$12.00(304.8)$	$14.00(355.6)$	$18.00(457.2)$
D	$13.40(340.4)$	$15.87(403.1)$	$20.37(517.4)$	$22.37(568.2)$	$24.37(619.0)$	$28.37(720.6)$

[^6]
Tritex II AC Linear

T2X090 Double Side Mount or Extended Tie Rod Mount

T2X090 Side Trunnion Mount or Rear Clevis Mount

T2X090 Front, Rear, or Front and Rear Flange Mount

DIM	3 in $(75 \mathrm{~mm})$ stroke in (mm)	6 in $(150 \mathrm{~mm})$ stroke in (mm)	10 in $(250 \mathrm{~mm})$ stroke in (mm)	12 in $(300 \mathrm{~mm})$ stroke in (mm)	18 in $(450 \mathrm{~mm})$ stroke in (mm)
A	$11.54(293.1)$	$14.01(355.9)$	$18.53(470.7)$	$20.53(521.5)$	$26.53(673.9)$
B	$6.15(156.1)$	$8.62(218.9)$	$13.12(333.3)$	$15.12(384.1)$	$21.12(536.4)$
C	$5.38(136.7)$	$8.01(203.4)$	$10.00(254.0)$	$12.00(304.8)$	$18.00(457.2)$
D	$13.52(343.3)$	$15.99(406.1)$	$20.49(520.4)$	$22.49(571.2)$	$28.49(723.6)$

[^7]
Tritex II AC Linear

T2X115 Double Side Mount or Extended Tie Rod Mount

T2X115 Side Trunnion Mount or Rear Clevis Mount

T2X115 Front, Rear, or Front and Rear Flange Mount

DIM	4 in $(102 \mathrm{~mm})$ stroke in (mm)	6 in $(152 \mathrm{~mm})$ stroke in (mm)	10 in $(254 \mathrm{~mm})$ stroke in (mm)	12 in $(305 \mathrm{~mm})$ stroke in (mm)	18 in $(457 \mathrm{~mm})$ stroke in (mm)
A	$13.79(350.3)$	$15.79(401.1)$	$19.79(502.7)$	$21.79(553.5)$	$27.79(705.9)$
B	$8.31(211.1)$	$10.31(261.8)$	$14.31(363.5)$	$16.31(414.3)$	$22.31(566.7)$
C	$4.00(101.6)$	$6.00(152.4)$	$10.00(254.0)$	$12.00(304.8)$	$18.00(457.2)$
D	$15.99(406.1)$	$17.99(456.9)$	$21.99(558.5)$	$23.99(609.3)$	$29.99(761.7)$

[^8]Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

Tritex II AC Linear

Anti-Rotate Option

DIM in (mm)	T2X075	T2X090	T2X115
A	$0.82(20.8)$	$0.75(19.1)$	$1.13(28.7)$
B	$2.20(56.0)$	$2.32(58.9)$	$3.06(77.7)$
C	$0.60(15.3)$	$0.70(17.8)$	$1.00(25.4)$
D	$1.32(33.5)$	$1.32(33.5)$	$1.65(41.9)$
E	$2.70(68.7)$	$2.82(71.6)$	$3.63(92.2)$
F	$0.39(9.9)$	$0.38(9.7)$	$0.50(12.7)$
G	$1.70(43.2)$	$1.70(43.2)$	$1.97(50.0)$
ØH	$0.63(16.0)$	$0.63(16.0)$	$0.75(19.1)$

Actuator Rod End Option

*When ordering the male $\mathrm{M} 12 \times 1.75$ main rod for the T 2 X 075 dimension " A " will be 1.57 in (40 mm)

Clevis Pin

DIM	T2X075 / T2X090	T2X075 / T2X090	T2X115
in	CP050		
(mm)	Rod Eye, Rod Clevis	CP075 Rear Clevis	CP075 Rod Eye, Rod Clevis, Spherical Eye, Rear Clevis
A	$2.28(57.9)$	$3.09(78.5)$	$3.09(78.5)$
B	$1.94(49.28)$	$2.72(69.1)$	$2.72(69.1)$
C	$0.17(4.32)$	$0.19(4.82)$	$1.19(4.82)$

[^9]
Tritex II AC Linear

Spherical Rod Eye

DIM in $(\mathbf{m m})$	T2X075	T2X090	T2X115
A	$1.81(46.0)$	$2.125(54.0)$	$2.88(73.2)$
ØB	$0.438(11.13)$	$0.500(12.7)$	$0.75(19.1)$
C	$1.06(26.9)$	$1.156(29.4)$	$1.72(43.7)$
D	$1.13(28.7)$	$1.312(33.3)$	$1.75(44.5)$
E	14 Deg	6 Deg	14 Deg
F	$0.44(11.1)$	$0.500(12.7)$	$0.69(17.5)$
G	$0.56(14.2)$	$0.625(15.9)$	$0.88(22.3)$
H	$0.75(19.1)$	$0.875(22.2)$	$1.13(28.7)$
J	$0.63(16.0)$	$0.750(19.1)$	$1.00(25.4)$
K	$7 / 16-20$	$1 / 2-20$	$3 / 4-16$

Rod Eye

$\begin{gathered} \text { DIM } \\ \text { in (mm) } \end{gathered}$	T2X075	T2X090	T2X115
	RE050	REI050	RE075
ØA	0.50 (12.7)	0.50 (12.7)	0.75 (19.05)
B	0.75 (19.1)	0.75 (19.05)	1.25 (31.8)
C	1.50 (38.1)	1.50 (38.1)	2.06 (52.3)
D	0.75 (19.1)	0.75 (19.05)	1.13 (28.7)
E	0.63 (15.9)	0.375 (9.53)	0.88 (22.2)
F	7/16-20	1/2-20	3/4-16

Rod Clevis

DIM in (mm)	T2X075	T2X090	T2X115
A	$0.750(19.05)$	$0.750(19.05)$	$1.125(28.58)$
B	$0.750(19.05)$	$0.750(19.05)$	$1.25(31.75)$
C	$1.500(38.1)$	$1.500(38.1)$	$2.375(60.3)$
D	$0.500(12.7)$	$0.500(12.7)$	$0.625(15.88)$
E	$0.765(19.43)$	$0.765(19.43)$	$1.265(32.12)$
ØF	$0.500(12.7)$	$0.500(12.7)$	$0.75(19.1)$
ØG	$1.000(25.4)$	$1.000(25.4)$	$1.50(38.1)$
H	$1.000(25.4)$	$1.000(25.4)$	$1.25(31.75)$
ØJ	$1.000(25.4)$	N/A	$1.25(31.75)$
K	$7 / 16-20$	$1 / 2-20$	$3 / 4-16$

Tritex II AC Rotary

Mechanical Specifications

R2M/G075

Rotary Motor Torque and Speed Ratings				
	Stator	1 Stack	2 Stack	3 Stack
	RPM at 240 VAC	4000	3000	2000
Continuous Torque	lbf-in (Nm)	13 (1.47)	21 (2.37)	28 (3.16)
Peak Torque	lbf-in (Nm)	25 (2.8)	42 (4.75)	56 (6.33)
Drive Current @ Continuous Torque	Amps	3.1	3.8	3.8
Operating Temperature Range*	-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Continuous AC Input Current"	Amps	4.3	4	3.6

* Ratings based on $40^{\circ} \mathrm{C}$ ambient conditions.
** Continuous input current rating is defined by UL and CSA.
For output torque of R2G gearmotors, multiply by ratio and efficiency. Please note maximum allowable output torques shown below.

Inertia				
	Stator	1 Stack	2 Stack	3 Stack
R2M Motor Armature Inertia $(+/-5 \%)$	$\mathrm{lb}-{\mathrm{in}-\mathrm{sec}^{2}}_{\left(\mathrm{kg}-\mathrm{cm}^{2}\right)}$	0.000545 (0.6158)	0.000973 (1.0996)	0.001401 (1.5834)
R2G Gearmotor Armature Inertia* $(+/-5 \%)$	lbf-in-sec $\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$	0.000660 (0.7450)	0.001068 (1.2057)	0.001494 (1.6868)

*Add armature inertia to gearing inertia for total R2G system inertia.

Radial Load and Bearing Life						
RPM	50	100	250	500	1000	3000
R2M075	278	220	162	129	102	71
lbf (N)	(1237)	(979)	(721)	(574)	(454)	(316)
R2G075 lbf (N)	343	272	200	159	126	88
(1526)	(1210)	(890)	(707)	(560)	(391)	

Side load ratings shown above are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Gearmotor Mechanical Ratings

		Maximum Allowable Output Torque-Set by User lbf-in (Nm)			Output Torque at Motor Speed for 10,000 Hour Life		
Model	Ratio	1000 RPM Ibf-in (Nm)	2500 RPM Ibf-in (Nm)	4000 RPM Ibf-in (Nm)			
R2G075-004	$4: 1$	$1618(182.8)$	$384(43.4)$	$292(32.9)$	$254(28.7)$		
R2G075-005	$5: 1$	$1446(163.4)$	$395(44.6)$	$300(33.9)$	$260(29.4)$		
R2G075-010	$10: 1$	$700(79.1)$	$449(50.7)$	$341(38.5)$	$296(33.9)$		

Two torque ratings for the R2G gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size R2G gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia		
	Single Reduction	
Gear Stages	lbf-in-sec	
$4: 1$	0.000095	$\left({\left.\mathrm{~kg}-\mathrm{cm}^{2}\right)}^{2}\right.$
$5: 1$	0.000062	(0.107)
$10: 1$	0.000017	(0.069)

Backlash and Efficiency		
	Single Reduction	Double Reduction
Backlash at 1\% Rated Torque	10 Arc min	13 Arc min
Efficiency	91%	86%

Motor and Gearmotor Weights

		R2M075 without Gears	R2G075 with 1 Stage Gearing	Added Weight for Brake
1 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$7.4(3.4)$	$9.8(4.4)$	$1.0(0.5)$
2 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$9.2(4.2)$	$11.6(5.3)$	
3 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$11(4.9)$	$13.4(6.1)$	

Tritex II AC Rotary

R2M/G090

Rotary Motor Torque and Speed Ratings				
	Stator	2 Stack	2 Stack	3 Stack
	RPM at 240 VAC	4000	3000	2000
Continuous Torque	lbf-in (Nm)	30 (3.4)	40 (4.5)	52 (5.9)
Peak Torque	lbf-in (Nm)	60 (6.8)	80 (9.0)	105 (11.9)
Drive Current @ Continuous Torque	Amps	7.5	7.5	6.6
Operating Temperature Range*	-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Continuous AC Input Current"	Amps	6.3	6.3	6.3

* Ratings based on $25^{\circ} \mathrm{C}$ ambient conditions.
** Continuous input current rating is defined by UL and CSA.

For output torque of R2G gearmotors, multiply by ratio and efficiency. Please note maximum allowable output torques shown below.

Inertia			
	Stator	2 Stack	3 Stack
R2M Motor Armature Inertia (+/-5\%)	Ib-in-sec ${ }^{2}\left(\mathrm{~kg}-\mathrm{cm}^{2}\right)$	$0.00097(1.09)$	$0.00140(1.58)$
R2G GearmotorArmature Inertia* (+/-5\%)	lbf-in-sec ${ }^{2}\left(\mathrm{kg-cm}^{2}\right)$	$0.00157(1.77)$	$0.00200(2.26)$

*Add armature inertia to gearing inertia for total inertia.

Radial Load and Bearing Life						
RPM	50	100	250	500	1000	3000
R2M090	427	340	250	198	158	109
lbf (N)	(1899)	(1512)	(1112)	(881)	(703)	(485)
R2G090	350	278	205	163	129	89
bf (N)	(1557)	(1237)	(912)	(725)	(574)	(396)

Side load ratings shown above are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Gearmotor Mechanical Ratings

Model	Ratio	Maximum Allowable Output Torque-Set by User Ibf-in (Nm)	Output Torque at Motor Speed for 10,000 Hour Life		
			1000 RPM Ibf-in (Nm)	2500 RPM Ibf-in (Nm)	4000 RPM Ibf-in (Nm)
R2G090-004	4:1	2078 (234.8)	698 (78.9)	530 (59.9)	460 (51.9)
R2G090-005	5:1	1798 (203.1)	896 (101.2)	680 (76.8)	591 (66.8)
R2G090-010	10:1	1126 (127.2)	1043 (117.8)	792 (89.4)	688 (77.7)
R2G090-016	16:1	2078 (234.8)	1057 (119.4)	803 (90.7)	698 (78.9)
R2G090-020	20:1	2078 (234.8)	1131 (127.8)	859 (97.1)	746 (84.3)
R2G090-025	25:1	1798 (203.1)	1452 (164.1)	1103 (124.6)	958 (108.2)
R2G090-040	40:1	2078 (234.8)	1392 (157.3)	1057 (119.4)	918 (103.7)
R2G090-050	50:1	1798 (203.1)	1787 (201.9)	1358 (153.4)	1179 (133.2)
R2G090-100	100:1	1126 (127.2)	1100 (124.3)	1100 (124.3)	1100 (124.3)

Two torque ratings for the R2G gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size R2G gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia					
Single Reduction			Double Reduction		
Gear Stages	lbf-in-sec ${ }^{2}$	$\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$	Gear Stages	lbf-in-sec ${ }^{2}$	$\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$
4:1	0.000154	(0.174)	16:1	0.000115	(0.130)
5:1	0.000100	(0.113)	20:1, $25: 1$	0.0000756	(0.0854)
10:1	0.0000265	(0.0300)	40:1, 50:1, 100:1	0.0000203	(0.0230)
Motor and Gearmotor Weights					
		R2M090 without Gears	R2G090 with 1 Stage Gearing	$\begin{aligned} & \text { R2G090 } \\ & 2 \text { Stage Ge } \end{aligned}$	Added Weight for Brake
2 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	14 (6.4)	22 (10)	25 (11.3)	1.5 (0.7)
3 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	17 (7.7)	25 (11.3)	28 (12.7)	

Backlash and Efficiency

	Single Reduction	Double Reduction
Backlash at 1\% Rated Torque	10 Arc min	13 Arc min
Efficiency	91%	86%

Tritex II AC Rotary

Dimensions

R2M/G075 Base Actuator

		R2M075	R2G075			R2M075	R2G075
A	in	5.32	5.32	L	in	0.79	0.79
	mm	135.1	135.1		mm	20.0	20.0
B	in	- 3.05	- 3.05	M	in	Ø 0.5512 / 0.5508	Ø 0.6302 / 0.6298
	mm	77.4	77.4		mm	14 h6	16 j6
C	in	4 X Ø 0.26 ON BC	4 X Ø 0.26 ON BC	N	in	1.18	1.18
	mm	6.5	6.5		mm	30.0	30.0
D	in	Ø 3.74 BC	Ø 3.74 BC	0	in	See Below	See Below
	mm	95.0	95.0		mm	See Below	See Below
E	in	Ø 2.5587 / 2.5580	Ø 2.5587 / 2.5580	P	in	5.59	5.59
	mm	65 g 6	65 g 6		mm	142.0	142.0
F	in	0.70	0.70	Q	in	1.50	1.50
	mm	17.9	17.9		mm	38.1	38.1
G	in	$\boldsymbol{\varnothing} 0.1969$ / 0.1957	$\boldsymbol{\varnothing} 0.1969$ / 0.1957	R	in	0.67	0.67
	mm	5 h 9	5 h 9		mm	17.0	17.0
H	in	0.21	0.21	S	in	0.75	0.75
	mm	5.3	5.3		mm	19.1	19.1
I	in	3.05	3.05	T	in	0.75	0.75
	mm	77.4	77.4		mm	19.1	19.1
J	in	0.38	0.45	U	in	4.58	4.58
	mm	9.5	11.5		mm	116.4	116.4
K	in	0.11	0.11				
	mm	2.8	2.8				

R2M075

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
0	$9.85(250.2)$	$10.85(275.6)$	$11.85(301.0)$

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
0	$8.57(217.7)$	$9.57(243.1)$	$10.57(268.5)$

R2G075

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
0	$10.19(258.8)$	$11.19(284.2)$	$12.19(309.6)$

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
	1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead
0	$11.42(290.1)$	$12.42(315.5)$	$13.42(340.9)$

[^10]
Tritex II AC Rotary

R2M/G090 Base Actuator

		R2M090	R2G090			R2M090	R2G090
A	in	0.2360 / 0.2348	0.2362 / 0.2350	J	in	$\varnothing 0.7480$ / 0.7475	Ø 0.8665 / 0.8659
	mm	6 h 9	6 h 9		mm	$19 \mathrm{h6}$	22 j6
B	in	3.54	3.54	K	in	1.57	1.89
	mm	90	90		mm	40	48
C	in	3.54	3.54	L	in	0.39	0.63
	mm	90	90		mm	10	16
D	in	$\varnothing 3.1492$ / 3.1485	$\varnothing 3.1492$ / 3.1485	M	in	See Below	See Below
	mm	80 g 6	80 g 6		mm	See Below	See Below
E	in	0.85	0.96	N	in	2.15	2.15
	mm	21.5	24.5		mm	55	55
F	in	$4 \mathrm{X} \varnothing 0.28$ ON BC	$4 \mathrm{X} \varnothing 0.257$ ON BC	0	in	6.95	6.95
	mm	7	6.5		mm	177	177
G	in	$\varnothing 3.94$ BC	$\varnothing 3.94$ BC	P	in	3.74	3.74
	mm	100	100		mm	95	95
H	in	0.12	0.118	Q	in	1.25	1.25
	mm	3	3		mm	32	32
1	in	1.38	1.417				
	mm	35	36				

R2M090

	Without Brake Option	
DIM	2 Stack Stator	3 Stack Stator
M	$10.25(256.3)$	$11.25(285.8)$

With Brake Option		
DIM	2 Stack Stator	3 Stack Stator
M	$11.6(294.6)$	$12.6(320.0)$

R2G090

	Without Brake Option	
DIM	2 Stack Stator	3 Stack Stator
M	Stage Gearhead	12 Stage Gearhead
DIM	2 2 Stack Stator	$13.36(339.3)$
M	2 Stage Gearhead	2 Stack Stator
Stage Gearhead		

	With Brake Option	
DIM	2 Stack Stator	3 Stack Stator
	1 Stage Gearhead	1 Stage Gearhead
M	$13.67(347.2)$	$14.67(372.6)$
DIM	2 Stack Stator	3 Stack Stator
M	$14.94(379.5)$	$15.94(404.9)$

[^11]
Tritex II AC Rotary

R2M/G115 Base Actuator

		R2M115	R2G115			R2M115	R2G115
A	in	0.3150 / 0.3135	0.3937 / 0.3923	J	in	$\varnothing 0.9449$ / 0.9444	Ø 1.2603 / 1.2596
	mm	8 h9	10 h 9		mm	24 h6	32 j6
B	in	4.53	4.530	K	in	1.97	2.55
	mm	115	115		mm	50	65
C	in	4.53	4.530	L	in	0.45	0.64
	mm	115	115		mm	12	16
D	in	$\varnothing 4.3302$ / 4.3294	$\varnothing 4.3302$ / 4.3294	M	in	See Below	See Below
	mm	110 g 6	110 g 6		mm	See Below	See Below
E	in	1.06	1.380	N	in	2.27	2.27
	mm	27	35		mm	58	58
F	in	$4 \times \varnothing 0.34$ ON BC	$4 \times \varnothing 0.34$ ON BC	0	in	7.56	7.56
	mm	8.5	8.5		mm	192	192
G	in	$\varnothing 5.12$ BC	Ø 5.12 BC	P	in	4.23	4.23
	mm	130	130		mm	108	108
H	in	0.16	0.16	Q	in	1.25	1.25
	mm	4	4		mm	32	32
I	in	1.41	1.58				
	mm	35.9	40				

R2M115

Without Brake Option		
DIM	1 Stack Stator	2 Stack Stator
M	$9.87(250.7)$	$11.87(301.5)$

With Brake Option		
DIM	1 Stack Stator	2 Stack Stator
M	$11.60(294.6)$	$13.60(345.4)$

R2G115

	Without Brake Option	
DIM	1 Stack Stator	2 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	
M	$13.88(352.6)$	$15.88(403.4)$
DIM	1 Stack Stator	2 Stack Stator
M Stage Gearhead	2 Stage Gearhead	
M	$15.49(393.4)$	$17.49(444.2)$

	With Brake Option	
DIM	1 Stack Stator	2 Stack Stator
	Stage Gearhead	1 Stage Gearhead
M	$15.43(391.9)$	$17.43(442.7)$
DIM	1 Stack Stator	2 Stack Stator
M Stage Gearhead	2 Stage Gearhead	
M	$17.04(432.8)$	$19.04(483.6)$

[^12]
Notes


```
T2X = Actuator Type
T2X = Tritex II Linear Actuator, high mechanical
    capacity
BBB = Actuator Frame Size
075 = 75 mm
090=90 mm
115=115 mm
CC = Stroke Length
03 = 3 inch (76 mm) (N/A T2X115)
04 = 4 inch (102 mm) (T2X115 only)
06 = 6 inch (150 mm)
10=10 inch (254 mm)
12 = 12 inch ( }305\textrm{mm}\mathrm{ )
18=18 inch (457 mm)
DD = Screw Lead (linear travel per
    screw revolution)
01 = 0.1 inch ( }2.54\textrm{mm}
02=0.2 inch ( }5.08\textrm{mm}
05=0.5 inch (12.7 mm)
08=0.75 inch (19.05 mm) (T2X115 only) }\mp@subsup{}{}{2
E = Connections
N = NPT Threaded Port via Adapter with Internal
    Terminals, 1/2" NPT
```

F = Mounting
$\mathrm{C}=$ Rear Clevis
D = Double Side Mount
E = Extended Tie Rod
F = Front Flange
$B=$ Front and Rear Flange, English
$\mathrm{G}=$ Metric Rear Clevis
$\mathrm{K}=$ Metric Double Side Mount
M = Metric Extended Tie Rod
Q = Metric Side Trunnion
$R=$ Rear Flange
$\mathrm{T}=$ Side Trunnion
G = Rod End
A = Male Metric Thread ${ }^{1}$
$B=$ Female Metric Thread ${ }^{1}$
F = Female US Standard Thread ${ }^{1}$
M = Male US Standard Thread ${ }^{1}$
HH = Feedback Type
HD = Analog Hall Device
IE $=$ Incremental Encoder, 8192 count resolution
AF = Absolute Feedback
III-II = Motor Stator, All 8 Pole
T2X075 Stator Specifications
$138-40=1$ Stack, 230 VAC, 4000 rpm $238-30=2$ Stack, 230 VAC, 3000 rpm $338-20=3$ Stack, 230 VAC, 2000 rpm

T2X090 Stator Specifications
$138-40=1$ Stack, 230 VAC, 4000 rpm $238-40=2$ Stack, $230 \mathrm{VAC}, 4000 \mathrm{rpm}$ $238-30=2$ Stack, 230 VAC. $3000 \mathrm{rpm}^{5}$

T2X115 Stator Specifications
138-30 = 1 Stack, 230 VAC, 3000 rpm
$238-20=2$ Stack, 230 VAC, $2000 \mathrm{rpm}^{7}$
$238-15=2$ Stack, 230 VAC, $1500 \mathrm{rpm}^{5,7}$ (N/A with $0.1^{\prime \prime}$ lead)

JJJ = Voltage
$230=115-230 \mathrm{VAC}$, single phase
KKK = Option Board
SIO = Standard I/O Interconnect
IA4 $=4-20 \mathrm{~mA}$ Analog $/ / 0$
CON $=$ CANOpen, without M12 ${ }^{6}$
EIN = SIO plus EthernetIP without M12 connector ${ }^{6}$
PIN = SIO plus Profinet 1 O without M12 connector ${ }^{6}$
TCN = SIO plus Modbus TCP without M12 connector ${ }^{9}$

MM $=$ Mechanical Options ${ }^{3}$
AR = External Anti-rotate
L1/2/3 $=$ External Limit Switches ${ }^{4}$
RB = Rear Brake
$\mathrm{PB}=$ Protective Bellows (N/A with extended tie rod mounting option)

NOTES:

1. Chrome-plated carbon steel. Threads not chrome-plated.
2. 0.75 lead not available above 12 inch stroke.
3. For extended temperature operation consult factory for model number.
4. Limit switch option requires AR option.
5. N/A with 0.1 inch lead
6. Requires customer supplied Ethernet cable through I/O port for Class 1 Division 2 compliance only.
7. Not available with 4 inch stroke.

Tritex II AC Rotary Ordering Guide

R2M/G = Motor Type
R2M = Tritex II AC Rotary Motor
R2G = Tritex II AC Rotary Gearmotor
AAA = Frame Size
$075=75 \mathrm{~mm}$
$090=90 \mathrm{~mm}$
$115=115 \mathrm{~mm}$
BBB = Gear Ratio
Blank $=$ R2M
Single Reduction Ratios
$004=4: 1$
$005=5: 1$
$010=10: 1$
Double Reduction Ratios (N/A on 75 mm)
$016=16: 1 \quad 020=20: 1$
$025=25: 1 \quad 040=40: 1$
$050=50: 1 \quad 100=100: 1$
C = Shaft Type
K = Keyed
R = Smooth/Round
D = Connections
$\mathrm{N}=$ NPT Threaded Port with Internal Terminals, 1/2" NPT
$E=$ Coating Options
G = Exlar Standard
F = Brake Option
S = No Brake, Standard
$B=$ Electric Brake, 24 VDC
GG = Feedback Type
HD = Analog Hall Device
IE = Incremental Encoder, 8192 Count Resolution
AF = Absolute Feedback
HHH-HH = Motor Stators
R2M/G075 Stator Specifications
138-40 = 1 Stack, 230 VAC, 4000 rpm
$238-30=2$ Stack, 230 VAC, 3000 rpm 338-20 = 3 Stack, 230 VAC, 2000 rpm

R2M/G090 Stator Specifications
238-40 = 2 Stack, 230 VAC, 4000 rpm
238-30 = 2 Stack, 230 VAC, 3000 rpm 338-20 = 3 Stack, 230 VAC, 2000 rpm

R2M/G115 Stator Specifications
138-30 = 1 Stack, 230 VAC, 3000 rpm 238-20 = 2 Stack, 230 VAC, 2000 rpm 238-15 = 2 Stack, 230 VAC, 1500 rpm

III = Voltage
$230=115-230$ VAC, Single Phase

JJJ = Option Board
SIO = Standard I/O Interconnect
$\mathrm{IA} 4=4-20 \mathrm{~mA}$ Analog I / O
CON = CANOpen, without M12 connector ${ }^{1}$
EIN = SIO plus EthernetIIP without M12 connector ${ }^{1}$
PIN = SIO plus Profinet IO without M12 connector ${ }^{1}$
TCN = SIO plus Modbus TCP without M12 connector ${ }^{1}$

For options or specials not listed above or for extended temperature operation, please contact Exlar

NOTES:

1. Requires customer supplied Ethernet cable through I/O port for Class 1 Division 2 compliance only. 2. For extended temperature operation consult factory for model number.

Tritex II DC Overview

Tritex II DC

Linear \& Rotary Actuators

No Comproming on Power, Performance or Reliability With forces to approximately $950 \mathrm{lbs}(4 \mathrm{kN})$ continuous and $1,300 \mathrm{lbf}$ peak (6 kN), and speeds to $33 \mathrm{in} / \mathrm{sec}(800 \mathrm{~mm} / \mathrm{sec}$), the DC Tritex II linear actuators also offer a benefit that no other integrated product offers: POWER! No longer are you limited to trivial amounts of force, or speeds so slow that many motion applications are not possible. And the new Tritex II with DC power electronics operates with maximum reliability over a broad range of ambient temperatures: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. The DC powered Tritex II actuators contain a 750 W servo amplifier and a very capable motion controller. With standard features such as analog following for position, compound moves, move chaining, and individual force/torque control for each move, the Tritex II Series is the ideal solution for most motion applications.

Tritex II Models

- TDX high mechanical capacity actuator, 75 mm
- RDM rotary motor, 75 , and 90 mm
- RDG rotary gearmotor, 75 , and 90 mm

Power Requirements

- DC Power 12-48 VDC nominal
- Connections for external braking resistor

Feedback Types

- Analog Hall with 1000 count resolution
- Incremental encoder with 8192 count resolution
- Absolute Feedback (analog hall with multi-turn, battery backup)

Connectivity

- Internal terminals accessible through removable cover (75 and 90 mm models)
- Threaded ports for cable glands (75 and 90 mm models)

Technical Characteristics	
Frame Sizes in (mm)	$2.9(75)$
Screw Leads in (mm)	$0.1(2), 0.2(5), 0.4(10)$,
	$0.5(13)$
Standard Stroke Lengths	$3(75), 6(150), 10(250)$, in (mm)
Force Range	up to 800$), 14(352 \mathrm{lbf}(3879 \mathrm{~N})$
Maximum Speed	up to $33.3 \mathrm{in} / \mathrm{s}(846 \mathrm{~mm} / \mathrm{s})$

Operating Conditions and Usage		
Accuracy:		
Screw Lead Error	in/ft ($\mu \mathrm{m} / 300 \mathrm{~mm}$)	0.001 (25)
Screw Travel Variation	in/ft ($\mu \mathrm{m} / 300 \mathrm{~mm}$)	0.0012 (30)
Screw Lead Backlash	in	0.004 (TDX)
Ambient Conditions:		
Standard Ambient Temperature	${ }^{\circ} \mathrm{C}$	0 to 65
Extended Ambient Temperature**	${ }^{\circ} \mathrm{C}$	-40 to 65
Storage Temperature	${ }^{\circ} \mathrm{C}$	-40 to 85
IP Rating		$\begin{aligned} & \text { TDX }=\text { IP66S } \\ & \text { RDM/RDG }=\text { IP66S } \end{aligned}$
NEMA Ratings		None
Vibration		$5.0 \mathrm{~g} \mathrm{rms}, 5$ to 500 hz
* Ratings at $40^{\circ} \mathrm{C}$, operatio ${ }^{* *}$ Consult Exlar for extended	over $40^{\circ} \mathrm{C}$ re temperature	uires de-rating. peration.

Tritex II DC Overview

Communications \& I/O

Digital Inputs:
9 to 30 VDC Opto-isolated

Digital outputs:

30 VDC maximum
100 mA continuous output
Isolated
Short circuit and over temperature protected

Analog Input DC:

$0-10 \mathrm{~V}$ or $+/-10 \mathrm{~V}$
$0-10 \mathrm{~V}$ mode, 12 bit resolution
+/-10V mode, 13 bit resolution assignable to Position, Velocity,
Torque, or Velocity override command

IA4 option:

4-20 mA input
16 bit resolution
Isolated
Assignable to Position, Velocity, Torque, or Velocity Override command

4-20 mA output
12 bit resolution
Assignable to Position, Velocity, Current, Temperature, etc.

Standard Communications:

- 1 RS485 port, Modbus RTU, opto-isolated for programming, controlling and monitoring

Analog Output DC:

0-10V

11 bit resolution

Tritex II DC I/O			
	$\mathbf{7 5 / 9 0} \mathbf{~ m m ~ f r a m e ~}$ with SIO, EIP, PIO, TCP	75/90 $\mathbf{~ m m ~ f r a m e ~}$ with IA4	$\mathbf{7 5 / 9 0} \mathbf{~ m m ~ f r a m e ~}$ with CAN
Isolated digital inputs	8	4	4
Isolated digital outputs	4	3	3
Analog input, non isolated	1	0	0
Analog output, non isolated	1	0	0
Isolated 4-20ma input	0	1	0
Isolated 4-20ma output	0	1	0

The IO count and type vary with the actuator model and option module selected.
All models include isolated digital IO, and an isolated RS485 communication port when using Modbus RTU protocol.

Product Features

1 -NPT Threaded Port via Adapter with Internal Terminals, $1 / 2^{\prime \prime}$ NPT (75 mm only)
2 - Front \& Rear Flange and Front Flange* 3-Rear Clevis
4 - Double Side Mount, Metric Side Mount*, Metric Double Side Mount, Side Mount* 5-Extended Tie Rod and Metric Extended Tie Rod 6-Metric Rear Clevis
7 - Metric Side Trunnion and Side Trunnion 8 -Female Metric Thread and Male Metric Thread SS 9 -Male Metric Thread and Male Metric Thread SS
10 - Female Metric Thread and Female Metric Thread SS 11 - Male US Standard Thread and Male, US Standard Thread SS
12 - Female US Standard Thread and Female US Standard Thread SS 13 - External Anti-rotate 14 - Rear Brake 15 - Protective Bellows

Tritex II DC Linear

Industries and Applications

Hydraulic cylinder replacement Ball screw replacement Pneumatic cylinder replacement

Mobile Equipment

Unmanned Vehicles

Process Control

Oil \& Gas Wellhead Valve Control
Pipeline Valve Control Damper Control
Knife Valve Control Chemical pumps

Entertainment / Simulation

Ride Motion Bases
Animatronics

Since no fluids and associated equipment (pumps, compressors, filters, accumulators, hose/tubing, oil testing, etc.) are required, electromechanical actuators offer greater energy efficiency, less environmental impact and lower total life-cycle cost.

The Tritex II Series DC actuators integrate a DC powered servo drive, digital position controller, brushless motor, and linear actuator in a compact, sealed package making it perfect for environments where AC power is difficult to achieve.

Mechanical Specifications

TDX075

*Power supply current is based on software current limit, not thermal limit. Consideration for peak current should also be considered when sizing power supplies. **Rating based on $40^{\circ} \mathrm{C}$ ambient conditions.

DEFINITIONS:

Continuous Force: The linear force produced by the actuator at continuous motor torque.
Peak Force: The linear force produced by the actuator at peak motor torque.

Max Speed: The maximum rated speed produced by the actuator at rated voltage.
C_{a} (Dynamic Load Rating): A design constant used in calculating the estimated travel life of the roller screw.

Estimated Service Life

- - TDX075-xx01
- - TDX075-xx02
- - TDX075-xx05

The L_{10} expected life of a roller screw linear actuator is expressed as the linear travel distance that 90% of properly maintained roller screws are expected to meet or exceed. For higher than 90% reliability, the result should be multiplied by the following factors: $95 \% \times 0.62 ; 96 \% \times$ $0.53 ; 97 \% \times 0.44 ; 98 \% \times 0.33 ; 99 \% \times 0.21$. This is not a guarantee; these charts should be used for estimation purposes only.

The underlying formula that defines this value is:
Travel life in millions of inches, where:
$\mathrm{C}_{\mathrm{a}}=$ Dynamic load rating (lbf)
$\mathrm{F}_{\mathrm{cm}}=$ Cubic mean applied load (lbf)
$\ell=$ Roller screw lead (inches)
All curves represent properly lubricated and maintained actuators.

Speed vs. Force Curves

Temperature Derating

The speed/torque curves are based on $40^{\circ} \mathrm{C}$ ambient conditions. The actuators may be operated at ambient temperatures up to $65^{\circ} \mathrm{C}$. Use the curve (shown right) for continuous torque/force deratings above $40^{\circ} \mathrm{C}$.

Speed inch $/ \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$

*Test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 3 / 8^{\prime \prime}$ at $40^{\circ} \mathrm{C}$ ambient.

Tritex II DC Linear

Options

AR = External Anti-rotate Assembly

This option provides a rod and bushing to restrict the actuator rod from rotating when the load is not held by another method. Shorter actuators have single sided anti-rotation attachments. Longer lengths require attachments on both sides for proper operation. For AR dimensions, see page 64.

RB = Rear Electric Brake

This option provides an internal holding brake. The brake is spring activated and electrically released.

PB = Protective Bellows

This option provides an accordion style protective bellows to protect the main actuator rod from damage due to abrasives or other contaminants in the environment in which the actuator must survive. The standard material of this bellows is S 2 Neoprene Coated Nylon, Sewn Construction. This standard bellows is rated for environmental temperatures of -40 to 250 degrees F. Longer strokes may require the main rod of the actuator to be extended beyond standard length. Not available with extended tie rod mounting option. Please contact your local sales representative.

Dimensions

TDX075 Double Side Mount or Extended Tie Rod Mount

TDX075 Side Trunnion Mount or Rear Clevis Mount

TDX075 Front, Rear, or Front and Rear Flange Mount

DIM	$\mathbf{3}$ inch $(\mathbf{7 5 ~ m m})$ stroke in $(\mathbf{m m})$	$\mathbf{6}$ inch $(150 \mathrm{~mm})$ stroke in $(\mathbf{m m})$	10 inch $(\mathbf{2 5 0 ~ m m})$ stroke in $(\mathbf{m m})$	12 inch $(\mathbf{3 0 0} \mathbf{~ m m})$ stroke in $(\mathbf{m m})$	14 inch $(\mathbf{3 5 0 ~ m m})$ stroke in $(\mathbf{m m})$	$\mathbf{1 8}$ inch ($\mathbf{4 5 0} \mathbf{~ m m})$ stroke in $(\mathbf{m m})$
A	$10.98(278.9)$	$13.45(341.6)$	$17.95(455.9)$	$19.95(506.7)$	$21.95(557.5)$	$25.95(659.1)$
B	$6.15(156.2)$	$8.62(218.9)$	$13.12(333.2)$	$15.12(384.0)$	$17.12(434.8)$	$21.12(536.4)$
C	$5.38(136.7)$	$8.00(203.2)$	$10.00(254.0)$	$12.00(304.8)$	$14.00(355.6)$	$18.00(457.2)$
D	$12.40(315.0)$	$14.87(377.7)$	$19.37(492.0)$	$21.37(542.8)$	$23.37(593.6)$	$27.37(695.2)$

* Add 1.61 inches to dimensions " A ", " B " and " D " if ordering a brake. Add1.2 inches to dimensions " A ", " C " and " D " and dimension if ordering a splined \triangle main rod.
**Add 2 inches (50.8 mm) to " E " if ordering protective bellows.

Tritex II DC Linear

Anti-Rotate Option

Actuator Rod End Option

DIM	TDX075
A	$0.750(19.1)$
B	$0.500(12.7)$
\varnothing C	$0.625(15.9)$
D	$0.281(7.1)$
\varnothing E	$0.562(14.3)$
F	$0.750(19.1)$
Male-Inch	$7 / 16-20$
Male-Metric	UNF-2A
Female-Inch	$7 / 1.75-60^{\circ}$
Female-Metric	UNF-2B

'When ordering the male M12x1.75 main rod for the TDX075 dimension " A " will be 1.57 in (40 mm)

Tritex II DC Linear

Clevis Pin

	TDX075
DIM	CP075 in (mm) Rear Clevis
A	$3.09(78.5)$
B	$2.72(69.1)$
C	$1.19(4.82)$
ØD	$0.75(19.1)-0.001 /-0.002$
ØE	$0.14(3.56)$

Spherical Rod
Eye

Rod Eye

	TDX075
DIM	RE050 in (mm)
ØA	$0.50(12.7)$
B	$0.75(19.1)$
C	$1.50(38.1)$
D	$0.75(19.1)$
E	$0.63(15.9)$
F	$7 / 16-20$

Rod Clevis

	TDX075
DIM	RC050 in (mm)
A	$0.75(19.1)$
B	$0.75(19.1)$
C	$1.50(38.1)$
D	$0.50(12.7)$
E	$0.765(19.43)$
ØF	$0.50(12.7)$
ØG	$1.00(25.4)$
H	$1.00(25.4)$
ØJ	$1.00(25.4)$
K	$7 / 16-20$

Tritex II DC Rotary

Mechanical Specifications

RDM/G075

Rotary Motor Torque and Speed Ratings				
	Stator	1 Stack	2 Stack	3 Stack
	RPM at 48 VDC	4000	3000	2000
Continuous Torque	lbf-in (Nm)	13 (1.46)	18.5 (2.09)	29 (3.28)
Peak Torque	lbf-in (Nm)	18.9 (2.08)	28 (3.16)	41 (4.63)
Drive Current @ Continuous Torque	Amps	22	22	22
Operating Temperature Range"	-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Maximum Continuous Power Supply Current	Amps	15	18	18

* Power supply current is based on software current limit, not thermal limit. Consideration for peak current should also be considered when sizing power supplies.

For output torque of RDG gearmotors, multiply by ratio and efficiency. Please note maximum allowable output torques shown below.
** Ratings based on $40^{\circ} \mathrm{C}$ ambient conditions.

Inertia				
	Stator	1 Stack	2 Stack	3 Stack
RDM Motor Armature Inertia (+/-5\%)	$\begin{aligned} & \mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2} \\ & \left(\mathrm{~kg}-\mathrm{cm}^{2}\right) \end{aligned}$	$\begin{aligned} & 0.000545 \\ & (0.6158) \end{aligned}$	$\begin{aligned} & 0.000973 \\ & (1.0996) \end{aligned}$	$\begin{aligned} & 0.001401 \\ & (1.5834) \end{aligned}$
RDG Gearmotor Armature Inertia* (+/-5\%)	$\begin{aligned} & \text { Ibf-in-sec² } \\ & \left(\mathrm{kg}-\mathrm{cm}^{2}\right) \end{aligned}$	$\begin{aligned} & 0.000660 \\ & (0.7450) \end{aligned}$	$\begin{aligned} & 0.001068 \\ & (1.2057) \end{aligned}$	$\begin{aligned} & 0.001494 \\ & (1.6868) \end{aligned}$

Radial Load and Bearing Life						
RPM	50	100	250	500	1000	3000
$\underset{\text { lbf (N) }}{\text { RDMO75 }}$	$\begin{gathered} 278 \\ (1237) \end{gathered}$	$\begin{gathered} 220 \\ (979) \end{gathered}$	$\begin{gathered} 162 \\ (721) \end{gathered}$	$\begin{gathered} 129 \\ (574) \end{gathered}$	$\begin{gathered} 102 \\ (454) \end{gathered}$	$\begin{gathered} 71 \\ (316) \\ \hline \end{gathered}$
$\underset{\text { lbf (N) }}{\text { RDGO75 }}$	$\begin{gathered} 343 \\ (1526) \end{gathered}$	$\begin{gathered} 272 \\ (1210) \end{gathered}$	$\begin{gathered} 200 \\ (890) \end{gathered}$	(707)	$\begin{gathered} 126 \\ (560) \end{gathered}$	$\begin{gathered} 88 \\ (391) \end{gathered}$

*Add armature inertia to gearing inertia for total inertia.
Side load ratings shown above are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Gearmotor Mechanical Ratings					
		Maximum Allowable Output	Output Torque at Motor Speed for 10,000 Hour Life		
Model	Ratio	Torque-Set by User Ibf-in (Nm)	1000 RPM Ibf-in (Nm)	2500 RPM Ibf-in (Nm)	4000 RPM Ibf-in (Nm)
RDG075-004	$4: 1$	1618 (182.8)	384 (43.4)	292 (32.9)	254 (28.7)
RDG075-005	5:1	1446 (163.4)	395 (44.6)	300 (33.9)	260 (29.4)
RDG075-010	10:1	700 (79.1)	449 (50.7)	341 (38.5)	296 (33.4)

Two torque ratings for the RDG gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size RDG gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia		
	Single Reduction (+l-5\%)	
Gear Stages	lbf-in-sec	
$4: 1$	0.000095	$\left({\left.\mathrm{~kg}-\mathrm{cm}^{2}\right)}\right.$
$5: 1$	0.000062	(0.107)
$10: 1$	0.000117	(0.069)

Motor and Gearmotor Weights							
		RDM075 without Gears	RDG075 with 1 Stage Gearing	Added Weight for Brake			
1 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$7.4(3.4)$	$9.8(4.4)$				
2 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$9.2(4.2)$	$11.6(5.3)$	$1.0(0.5)$			
3 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$11(4.9)$	$13.4(6.1)$				

Tritex II DC Rotary

RDM/G090

Rotary Motor Torque and Speed Ratings

| | Stator | 1 Stack | 2 Stack | 3 Stack |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | RPM at 48 VDC | 3300 | 1800 | 1400 |
| Continuous Torque | Ibf-in (Nm) | $17(1.92)$ | $28(3.16)$ | $41(4.63)$ |
| Peak Torque | Ibf-in (Nm) | $21.8(2.46)$ | $36(4.07)$ | $52.8(5.97)$ |
| Drive Current @ Continuous Torque | Amps | 22 | 22 | 22 |
| Operating Temperature Range" | | -20 to $65^{\circ} \mathrm{C}$ | $\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar) | |
| Maximum Continuous Power Supply
 Current | Amps | 18 | 18 | 18 |

* Power supply current is based on software current limit, not thermal limit. Consideration for peak current should also be considered when sizing power supplies. For output torque of RDG gearmotors, multiply by ratio and efficiency. Please note maximum allowable output torques shown below.
** Ratings based on $40^{\circ} \mathrm{C}$ ambient conditions.

Inertia				
	Stator	1 Stack	2 Stack	3 Stack
RDM Motor Armature Inertia (+/-5\%)	$\begin{aligned} & \mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2} \\ & \left(\mathrm{~kg}-\mathrm{cm}^{2}\right) \end{aligned}$	$\begin{gathered} 0.00054 \\ (0.609) \end{gathered}$	$\begin{gathered} 0.00097 \\ (1.09) \end{gathered}$	$\begin{gathered} 0.00140 \\ (1.58) \end{gathered}$
RDG Gearmotor Armature Inertia (+/-5\%)	$\begin{aligned} & \text { Ibf-in-sec² } \\ & \left(\mathrm{kg}-\mathrm{cm}^{2}\right) \end{aligned}$	$\begin{gathered} 0.00114 \\ (1.29) \end{gathered}$	$\begin{gathered} 0.00157 \\ (1.77) \end{gathered}$	$\begin{gathered} 0.00200 \\ (2.26) \end{gathered}$

Radial Load and Bearing Life						
RPM	50	100	250	500	1000	3000
RDMO90	427	340	250	198	158	109
lbf (N)	(1899)	(1512)	(1112)	(881)	(703)	(485)
RDG090	350	278	205	163	129	89
bf (N)	(1557)	(1237)	(912)	(725)	(574)	(396)

*Add armature inertia to gearing inertia for total inertia.
Side load ratings shown above are for 10,000 hour
bearing life at 25 mm from motor face at given rpm

Gearmotor Mechanical Ratings

		Maximum Allowable Output Torque-Set by User Ibf-in (Nm)		Output Torque at Motor Speed for 10,000 Hour Life		
Model	Ratio	1000 RPM Ibf-in (Nm)	2500 RPM Ibf-in (Nm)	3300 RPM Ibf-in (Nm)		
RDG090-004	$4: 1$	$2078(234.8)$	$698(78.9)$	$530(59.9)$	$488(55.1)$	
RDG090-005	$5: 1$	$1798(203.1)$	$896(101.2)$	$680(76.8)$	$626(70.7)$	
RDG090-010	$10: 1$	$1126(127.2)$	$1043(117.8)$	$792(89.5)$	$729(82.4)$	
RDG090-016	$16: 1$	$2078(234.8)$	$1057(119.4)$	$803(90.7)$	$739(83.5)$	
RDG090-020	$20: 1$	$2078(234.8)$	$1131(127.8)$	$859(97.1)$	$790(89.3)$	
RDG090-025	$25: 1$	$1798(203.1)$	$1452(164.1)$	$1103(124.6)$	$1015(114.7)$	
RDG090-040	$40: 1$	$2078(234.8)$	$1392(157.3)$	$1057(119.4)$	$973(109.9)$	
RDG090-050	$50: 1$	$1798(203.1)$	$1787(201.9)$	$1358(153.4)$	$1249(141.1)$	
RDG090-100	$100: 1$	$1126(127.2)$	$1100(124.3)$	$1100(124.3)$	$1100(124.3)$	

Two torque ratings for the RDG gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size RDG gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia					
Single Reduction					
Gear Stages	lbf-in-sec 2	$\left(\mathrm{~kg}-\mathrm{cm}^{2}\right)$	Gear Stages	lbf-in-sec ${ }^{2}$	$\left({\left.\mathrm{~kg}-\mathrm{cm}^{2}\right)}^{\text {Deuble Reduction }}\right.$
$4: 1$	0.0000154	(0.174)	$16: 1$	0.000115	(0.130)
$5: 1$	0.0000100	(0.113)	$20: 1,25: 1$	0.0000756	(0.0854)
$10: 1$	0.0000265	(0.0300)	$40: 1,50: 1,100: 1$	0.0000203	(0.0230)

Backlash and Efficiency		
	Single Reduction	Double Reduction
Backlash at 1\% Rated Torque	10 Arc min	13 Arc min
Efficiency	91%	86%

Motor and Gearmotor Weights

	RDM090 without Gears	RDG090 with 1 Stage Gearing	RDG090 with 2 Stage Gearing	Added Weight for Brake	
1 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$12.5(5.7)$	$20.5(9.3)$	$23.5(10.7)$	
2 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$15.5(7.0)$	$23.5(10.7)$	$26.5(12)$	$1.5(0.7)$
3 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$18.5(8.4)$	$26.5(12.0)$	$29.5(13.4)$	

Speed vs. Force Curves

For RDG gearmotors, multiply torque by ratio and efficiency. Divide speed by gear ratio.
**RDM075 and RDM090 test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 3 / 8^{\prime \prime}$ at $40^{\circ} \mathrm{C}$ ambient

Tritex II DC Rotary

Dimensions

RDM/G075 Base Actuator

		RDM075	RDG075			RDM075	RDG075
A	in	3.05	3.05	K	in	$\varnothing 0.5512 / 0.5508$	$\varnothing 0.6302$ / 0.6298
	mm	77.4	77.4		mm	14 h 6	16 j6
B	in	$\varnothing 0.1969$ / 0.1957	$\varnothing 0.1969$ / 0.1957	L	in	1.18	1.18
	mm	5 h 9	5 h 9		mm	30.0	30.0
C	in	$\square 3.05$	$\square 3.05$	M	in	See Below	See Below
	mm	77.4	77.4		mm	See Below	See Below
D	in	$4 \mathrm{X} \varnothing 0.26$ ON BC	$4 \mathrm{X} \varnothing 0.26$ ON BC	N	in	4.59	4.59
	mm	6.5	6.5		mm	116.6	116.6
E	in	$\varnothing 3.74$ BC	Ø 3.74 BC	0	in	1.5	1.5
	mm	95.0	95.0		mm	38.1	38.1
F	in	$\varnothing 2.5587$ / 2.5580	$\varnothing 2.5587$ / 2.5580	P	in	5.30	5.30
	mm	65 g 6	65 g 6		mm	134.5	134.5
G	in	0.63	0.70	Q	in	1.06	1.06
	mm	15.9	17.9		mm	27.0	27.0
H	in	0.38	0.45	R	in	4.61	4.61
	mm	9.5	11.5		mm	117.0	117.0
I	in	0.11	0.11	S	in	0.75	0.75
	mm	2.8	2.8		mm	19.1	19.1
J	in	0.79	0.79	T	in	0.75	0.75
	mm	20.0	20.0		mm	19.1	19.1

RDM075

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M	$7.57(192.3)$	$8.57(217.7)$	$9.57(243.1)$

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M	$8.85(224.8)$	$9.85(250.2)$	$10.85(275.6)$

RDG075

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
M	$9.19(233.4)$	$10.19(258.8)$	$11.19(284.2)$

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
M	$10.42(264.7)$	$11.42(290.1)$	$12.42(315.5)$

[^13]
Tritex II DC Rotary

RDM/G090 Base Actuator

		RDM90	RDG090			RDM090	RDG090
A	in	3.54	3.54	L	in	1.57	1.89
	mm	90	90		mm	39.6	48.0
B	in	3.54	3.54	M	in	See Below	See Below
	mm	90	90		mm	See Below	See Below
C	in	$4 \mathrm{X} \varnothing 0.28$	$4 \mathrm{X} \varnothing 0.26$	N	in	1.77	1.77
	mm	7.0	6.5		mm	45.0	45.0
D	in	$\varnothing 3.94$ BC	$\varnothing 3.94$ BC	0	in	5.30	5.30
	mm	100.0	100.0		mm	134.5	134.5
E	in	$\varnothing 3.1492$ / 3.1485	$\varnothing 3.1492$ / 3.1485	P	in	3.87	3.87
	mm	80 g 6	80 g 6		mm	98.3	98.3
F	in	0.85	0.96	Q	in	1.06	1.06
	mm	21.5	24.3		mm	27.0	27.0
G	in	$\varnothing 0.2362$ / 0.2350	$\varnothing 0.2362$ / 0.2350	R	in	3.05	3.05
	mm	6 h9	6 h9		mm	77.4	77.4
H	in	0.39	0.63	S	in	0.75	0.75
	mm	10.0	15.9		mm	19.1	19.1
I	in	0.12	0.12	T	in	0.75	0.75
	mm	3.0	3.0		mm	19.1	19.1
J	in	1.26	1.42	\mathbf{U}	in	4.58	4.58
	mm	32.0	36.0		mm	116.4	116.4
K	in	$\emptyset 0.7480$ / 0.7475	$\varnothing 0.8665$ / 0.8659				
	mm	19 h6	22 j6				

RDM090

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M	$7.69(195.3)$	$8.69(220.7)$	$9.69(246.1)$

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M	$9.0(228.6)$	$10.00(254.0)$	$11.00(279.4)$

RDG090

Without Brake Option			
DIM	1 Stack Stator 1 Stage Gearhead	2 Stack Stator Stage Gearhead	3 Stack Stator Stage Gearhead
M	$10.80(274.3)$	$11.80(299.7)$	$12.80(325.1)$
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M Stage Gearhead	2 Stage Gearhead	2 Stage Gearhead	
12.06 (306.3)	$13.06(331.7)$	$14.06(357.1)$	

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
M	$12.13(308.1)$	$13.11(333.0)$	14.11 (358.4)
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
2 Stage Gearhead	2 Stage Gearhead	2 Stage Gearhead	
M	$13.37(339.6)$	$14.37(365.0)$	$15.37(390.4)$

[^14]
Notes

Tritex II DC Linear Ordering Guide

TDX $=$ Actuator Type
TDX $=$ Tritex II Linear Actuator, high mechanical
capacity

BBB $=$ Actuator Frame Size
$060=60 \mathrm{~mm}$
$075=75 \mathrm{~mm}$
CC $=$ Stroke Length
$03=3$ inch $(76 \mathrm{~mm})$
$06=6$ inch $(150 \mathrm{~mm})$
$10=10$ inch $(254 \mathrm{~mm})$
$12=12$ inch $(305 \mathrm{~mm})$
$14=14$ inch $(356 \mathrm{~mm})(75 \mathrm{~mm}$ only $)$
$18=18$ inch $(457 \mathrm{~mm})(75 \mathrm{~mm}$ only $)$
DD $=$ Screw Lead (linear travel per
screw revolution)
$01=0.1$ inch $(2.54 \mathrm{~mm})$
$02=0.2$ inch $(5.08 \mathrm{~mm})$
$04=0.4$ inch $(10.16 \mathrm{~mm})(60 \mathrm{~mm}$ only $)$
$05=0.5$ inch $(12.7 \mathrm{~mm})(75 \mathrm{~mm}$ only $)$

TDX = Actuator Type

 capacityBBB $=$ Actuator Frame Size
$060=60 \mathrm{~mm}$
$075=75 \mathrm{~mm}$
CC = Stroke Length
$03=3$ inch (76 mm)
$06=6$ inch (150 mm)
= 10 inch (254 mm)
$12=12$ inch (305 mm)
18 = $18 \mathrm{inch}(457 \mathrm{~mm}$) 75 mm m)

DD = Screw Lead (linear travel per screw revolution)
$=0.1$ inch (2.54 mm)
$04=0.4$ inch (10.16 mm) (60 mm only)
$05=0.5$ inch (12.7 mm) (75 mm only)

E = Connections
$\mathrm{N}=$ NPT Threaded Port via Adapter with Internal Terminals, $1 / 2^{\prime \prime}$ NPT (75 mm only)

F = Mounting
C = Rear Clevis
G = Metric Rear Clevis
D = Double Side Mount
$\mathrm{K}=$ Metric Double Side Mount
E = Extended Tie Rod
M = Metric Extended Tie Rod
$\mathrm{F}=$ Front Flange
$\mathrm{R}=$ Rear Flange
T = Side Trunnion
$Q=$ Metric Side Trunnion
G = Rod End
M = Male US Standard Thread ${ }^{1}$
$A=$ Male Metric Thread ${ }^{1}$
F = Female US Standard Thread ${ }^{1}$
$B=$ Female Metric Thread ${ }^{1}$
HH = Feedback Type
HD = Analog Hall Device
IE = Incremental Encoder, 8192 count resolution
AF = Absolute Feedback ${ }^{6}$

III-II = Motor Stator, All 8 Pole
TDX075 Stator Specifications
1B8-30 = 1 Stack, 48 VDC, 3000 rpm
2B8-30 $=2$ Stack, 48 VDC, 3000 rpm
$3 B 8-20=3$ Stack, 48 VDC, $2000 \mathrm{rpm}^{2}$
JJJ = Voltage
$048=12-48 \mathrm{VDC}$
KKK = Option Board
SIO = Standard IO Interconnect
IA $4=4-20 \mathrm{~mA}$ Analog $1 / 0$
CON = CANOpen, non-connectorized ${ }^{5}$
EIN = SIO plus EthernetIP without M12 connector ${ }^{5}$
PIN = SIO plus Profinet $I O$ without M12 connector ${ }^{5}$
TCN = SIO plus Modbus TCP without M12
connector ${ }^{5}$
MM $=$ Mechanical Options ${ }^{3}$
AR = External Anti-rotate
L1/2/3 = External Limit Switches (7)
$\mathrm{RB}=$ Rear Brake
$\mathrm{PB}=$ Protective Bellows ${ }^{4}$

NOTES:

1. Chrome-plated carbon steel. Threads not chrome-plated.
2. Not available on 0.1 inch lead.
3. For extended temperature operation consult factory for model number.
4. Not available with extended tie rod mounting option.
5. Requires customer supplied Ethernet cable through I/O port for Class 1 Division 2 compliance only.
6. When ordering a RDM or RDG 60 mm or other sizes with top mounted connectors the battery backup for AF feedback must be mounted externally. A DIN rail mounted board and battery is supplied, Exlar PN 48224.

Tritex II DC Rotary Ordering Guide

RDM/G = Motor Type
RDM = Tritex II DC Rotary Motor
RDG = Tritex II DC Rotary Gearmotor
AAA = Frame Size
$060=60 \mathrm{~mm}$
$075=75 \mathrm{~mm}$
$090=90 \mathrm{~mm}$
BBB = Gear Ratio
Blank = RDM
Single Reduction Ratios
$004=4: 1 \quad 005=5: 1 \quad 010=10: 1$
Double Reduction Ratios (NA on 75 mm)
$016=16: 1 \quad 020=20: 1$
$025=25: 1 \quad 040=40: 1$
$050=50: 1 \quad 100=100: 1$
C = Shaft Type
K = Keyed
R = Smooth/Round

RDM/G090 Stator Specifications
1B8-33 = 1 Stack, 48 VDC, 3300 rpm 2B8-18 = 2 Stack, 48 VDC, 1800 rpm 3B8-14 = 3 Stack, 48 VDC, 1400 rpm

III = Voltage
$048=12-48$ VDC
JJJ = Option Board
SIO = Standard I/O Interconnect $\mathrm{IA} 4=+4-20 \mathrm{mAAnalog} \mathrm{I} / \mathrm{O}$
CON $=$ CANOpen, non-connectorized ${ }^{2}$
EIN = SIO plus EtherNet/IP without M12 connector ${ }^{2}$ PIN = SIO plus Profinet IO without M12 connector ${ }^{2}$ TCN = SIO plus Modbus TCP without M12 connector ${ }^{2}$

NOTES:

1. For extended temperature operation consult factory for model number.
2. Requires customer supplied Ethernet cable through I/O port for Class 1 Division 2 compliance only. Also N/A on 60 mm .
3. When ordering a RDM or RDG 60 mm or other sizes with top mounted connectors the battery backup for AF feedback must be mounted externally. A DIN rail mounted board and battery is supplied, Exlar PN 48224."

GSX Series Integrated Motor/Actuator

GSX SERIES

INTEGRATED SERVO MOTOR AND ACTUATOR
High quality screw for longer life Ideal hydraulic replacement Powerful and robust Compact size

GSX Series Integrated Motor/Actuator

GSX Series

High Capacity Integrated Motor/Actuator

Description

For applications that require long life and continuous duty, even in harsh environments, the GSX Series actuator offers a robust solution. The life of these actuators can exceed that of a ball screw actuator by 15 times, all while delivering high speeds and high forces.

Sealed for Long Life with Minimum Maintenance

GSX Series actuators have strong advantages wherever outside contaminants are an issue. In most rotary-to-linear devices, critical mechanisms are exposed to the environment. Thus, these actuators must be frequently inspected, cleaned and lubricated.

In contrast, the converting components in all Exlar GSX units are mounted within sealed motor housing. With a simple bushing and seal on the smooth extending rod, abrasive particles or other contaminants are prevented from reaching the actuator's critical mechanisms. This assures trouble-free operation even in the most harsh environments.

Similarly, lubrication requirements are minimal. GSX actuators can be lubricated with either grease or recirculated oil. Recirculated oil systems eliminate this type of maintenance altogether. A GSX Series actuator with a properly operating recirculating oil system will operate indefinitely, without any other lubrication requirements.

Technical Characteristics	
Frame Sizes in (mm)	$2(50.8), 3(76.2), 4(101.6), 5.5(139.7), 7(177.8)$
Screw Leads in (mm)	$0.1(2), 0.2(5), 0.25(6), 0.4(10), 0.5(13)$, $0.75(19), 1(25)$
Standard Stroke Lengths	$3(76), 4(102), 6(152), 8(203)$, $10(254), 12(305), 14(357), 18(457)$
Force Range	103 to $11,528 \mathrm{lbf}(458$ to 51 kN$)$
Maximum Speed	up to $37.5 \mathrm{in} / \mathrm{sec}(952 \mathrm{~mm} / \mathrm{s})$

Operating Conditions and Usage		
Accuracy:		
Screw Lead Error	in/ft $(\mu \mathrm{m} / 300 \mathrm{~mm})$	$0.001(25)$
Screw Travel Variation	in/ft $(\mu \mathrm{m} / 300 \mathrm{~mm})$	$0.0012(30)$
Screw Lead Backlash	in	0.004 maximum
Ambient Conditions:		
Standard Ambient Temperature	${ }^{\circ} \mathrm{C}$	0 to 65
Extended Ambient Temperature	${ }^{\circ} \mathrm{C}$	-30 to 65
Storage Temperature	${ }^{\circ} \mathrm{C}$	-40 to 85
IP Rating		IP65S
Vibration		

* Consult Exlar for extended temperature operations
** Resolver feedback
Ratings at $25^{\circ} \mathrm{C}$, operation over $25^{\circ} \mathrm{C}$ requires de-rating.

Product Features

1 -Exlar standard M23 style and manufacturer's connector
2 -Front flange
3 -Rear flange
4 -Rear clevis
5 -Double side mount and metric double side mount
6 -Side trunnion and metric side trunnion
7 -Extended tie rods and metric extended tie rods
8 -Metric rear clevis
9 -Male, US standard thread
0 -Male, metric thread
11 -Female, US standard thread
12 -Female, metric thread
13 -External anti-rotate
14 -Protective bellows
15 -Splined main rod - Female
16 -Splined main rod - Male
17 -Rear brake
18 -External limit switch - N.O., PNP
19 -External limit switch - N.C., PNP

Mechanical Specifications

GSX30

Model No. (Motor Stacks)		1 Stack			2 Stack			3 Stack	
Screw Lead Designator		01	02	05	01	02	05	02	05
Screw Lead	in	0.1	0.2	0.5	0.1	0.2	0.5	0.2	0.5
	mm	2.54	5.08	12.7	2.54	5.08	12.7	5.08	12.7
Continuous Force (Motor Limited)	lbf	792	449	190	1277	724	306	1020	432
	N	3521	1995	845	5680	3219	1363	4537	1922
Max Velocity	in/sec	5.0	10.0	25.0	5.0	10.0	25.0	10.0	25.0
	$\mathrm{mm} / \mathrm{sec}$	127.0	254.0	635.0	127.0	254.0	635.0	254.0	635.0
Friction Torque (standard screw)	in-lbf	1.5			1.7			1.9	
	$\mathrm{N}-\mathrm{m}$	0.17			0.19			0.21	
Friction Torque (preloaded screw)	in-lbf	3.3			3.5			3.7	
	$\mathrm{N}-\mathrm{m}$	0.37			0.39			0.41	
Min Stroke	in	3			3			6	
	mm	76			76			152	
Max Stroke	in	18			18			18	
	mm	457			457			457	
C_{a} (Dynamic Load Rating)	lbf	5516	5800	4900	5516	5800	4900	5800	4900
	N	24536	25798	21795	24536	25798	21795	25798	21795
Inertia (zero stroke)	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2}$	0.002655			0.002829			0.003003	
	$\mathrm{Kg}-\mathrm{m}^{2}$	0.0003000			0.0003196			0.00033963	
Inertia Adder (per inch of stroke)	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in}$	0.0001424							
	$\mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.00001609							
Weight (zero stroke)	lb	6.5			7.65			8.8	
	Kg	2.95			3.47			3.99	
Weight Adder (per inch of stroke)	lb	1.1							
	Kg	0.50							

GSX40

Model No. (Motor Stacks)		1 Stack				2 Stack				3 Stack		
Screw Lead Designator		01	02	05	08	01	02	05	08	02	05	08
Screw Lead	in	0.1	0.2	0.5	0.75	0.1	0.2	0.5	0.75	0.2	0.5	0.75
	mm	2.54	5.08	12.7	19.05	2.54	5.08	12.7	19.05	5.08	12.7	19.05
Continuous Force (Motor Limited)	lbf	2089	1194	537	358	3457	1975	889	593	2687	1209	806
	N	9293	5310	2390	1593	15377	8787	3954	2636	11950	5378	3585
Max Velocity	in/sec	5.0	10.0	25.0	37.5	5.0	10.0	25.0	37.5	10.0	25.0	37.5
	$\mathrm{mm} / \mathrm{sec}$	127.0	254.0	635.0	953.0	127.0	254.0	635.0	953.0	254.0	635.0	953.0
Friction Torque (standard screw)	in-lbf	2.7				3.0				3.5		
	N-m	0.31				0.34				0.40		
Friction Torque (preloaded screw)	in-lbf	7.2				7.5				8.0		
	$\mathrm{N}-\mathrm{m}$	0.82				0.85				0.91		
Min Stroke	in	4				6				8		
	mm	102				152				203		
Max Stroke	in	18			12	18			12	18		12
	mm	457			305	457			305	457		305
C_{a} (Dynamic Load Rating)	lbf	7900	8300	7030	6335	7900	8300	7030	6335	8300	7030	6335
	N	35141	36920	31271	28179	35141	36920	31271	28179	36920	31271	28179
Inertia (zero stroke)	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2}$	0.01132				0.01232				0.01332		
	$\mathrm{Kg}-\mathrm{m}^{2}$	0.0012790				0.001392				0.001505		
Inertia Adder (per inch of stroke)	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in}$	0.0005640										
	$\mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.00006372										
Weight (zero stroke)	lb	8.0				11.3				14.6		
	Kg	3.63				5.13				6.62		
Weight Adder (per inch of stroke)	lb	2.0										
	Kg	0.91										

GSX50

Model No. (Motor Stacks)		1 Stack				2 Stack				3 Stack		
Screw Lead Designator		01	02	05	10	01	02	05	10	02	05	10
Screw Lead	in	0.1	0.2	0.5	1.0	0.1	0.2	0.5	1.0	0.2	0.5	1.0
	mm	2.54	5.08	12.7	25.4	2.54	5.08	12.7	25.4	5.08	12.7	25.4
Continuous Force (Motor Limited)	Ibf	4399	2578	1237	619	7150	4189	2011	1005	5598	2687	1344
	N	19568	11466	5503	2752	31802	18634	8944	4472	24901	11953	5976
Max Velocity	in/sec	4.0	8.0	20.0	40.0	4.0	8.0	20.0	40.0	8.0	20.0	40.0
	$\mathrm{mm} / \mathrm{sec}$	101.6	203.0	508.0	1016.0	101.6	203.0	508.0	1016.0	203.0	508.0	1016.0
Friction Torque (standard screw)	in-lbf	4.1				4.6				5.3		
	$\mathrm{N}-\mathrm{m}$	0.46				0.53				0.60		
Friction Torque (preloaded screw)	in-lbf	10.1				10.6				11.3		
	N -m	1.14				1.21				1.36		
Min Stroke	in	6				6				10		
	mm	152				152				254		
Max Stroke	in	10	14		10	10	14		10	14		10
	mm	254	356		254	254	356		254	356		254
C_{a} (Dynamic Load Rating)	Ibf	15693	13197	11656	6363	15693	13197	11656	6363	13197	11656	6363
	N	69806	58703	51848	28304	69806	58703	51848	28304	58703	51848	28304
Inertia (zero stroke)	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2}$	0.02084				0.02300				0.02517		
	$\mathrm{Kg}-\mathrm{m}^{2}$	0.002356				0.002599				0.002844		
Inertia Adder (per inch of stroke)	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in}$	0.001208										
	$\mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.0001365										
Weight (zero stroke)	lb	46.0				53.0				60.0		
	Kg	20.87				24.04				27.2		
Weight Adder (per inch of stroke)	lb	3.0										
	Kg	1.36										

GSX60

Model No. (Motor Stacks)		1 Stack			2 Stack			3 Stack		
Screw Lead Designator		03	05	10	03	05	10	03	05	10
Screw Lead	in	0.25	0.5	1.0	0.25	0.5	1	0.25	0.5	1
	mm	6.35	12.7	25.4	6.35	12.7	25.4	6.35	12.7	25.4
Continuous Force (Motor Limited)	Ibf	4937	2797	1481	8058	4566	2417	11528	6533	3459
	N	21958	12443	6588	35843	20311	10753	51278	29058	15383
Max Velocity	in/sec	10.0	20.0	40.0	10.0	20.0	40.0	10.0	20.0	40.0
	$\mathrm{mm} / \mathrm{sec}$	254.0	508.0	1016.0	254.0	508.0	1016.0	254.0	508.0	1016.0
Friction Torque (standard screw)	in-lbf	8.1			10.8			14.5		
	N -m	0.91			1.22			1.64		
Friction Torque (preloaded screw)	in-lbf	14.1			16.8			20.5		
	$\mathrm{N}-\mathrm{m}$	1.59			1.90			2.32		
Min Stroke	in	6			10			10		
	mm	152			254			254		
Max Stroke	in	10			10			10		
	mm	254			254			254		
C_{a} (Dynamic Load Rating)	Ibf	25300	22800	21200	25300	22800	21200	25300	22800	21200
	N	112540	101420	94302	112540	101420	94302	112540	101420	94302
Inertia (zero stroke)	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2}$	0.0804			0.1114			0.1424		
	$\mathrm{Kg}-\mathrm{m}^{2}$	0.009087			0.001259			0.01609		
Inertia Adder (per inch of stroke)	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in}$	0.005190								
	$\mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.0005864								
Weight (zero stroke)	lb	48			62			76		
	Kg	21.77			28.12			34.47		
Weight Adder (per inch of stroke)	lb	8.0								
	Kg	3.63								

GSX Series Integrated Motor/Actuator

Weight Adders of GSX Accessories

Weight Adders of GSX Accessories	GSX20		GSX30		GSX40		GSX50		GSX60	
	Ibs	kg								
Front Flange Mount	0.7	0.3	1.7	0.8	4.0	1.8	10.8	4.9	15.2	6.9
Rear Flange Mount	1.0	0.5	1.8	0.8	5.0	2.3	12.8	5.8	30.4	13.7
Side Mount	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Extended Tie Rod	0.0	0.0	0.1	0.0	0.2	0.1	0.3	0.2	0.5	0.2
Side Trunnion	0.8	0.3	0.8	0.3	1.8	0.8	4.6	2.1	9.3	4.2
3 inch Stroke	2.2	1.0	2.8	1.3	NA	NA	NA	NA	NA	NA
4 inch Stroke	NA	NA	NA	NA	5.1	2.3	NA	NA	NA	NA
6 inch Stroke	3.1	1.4	3.6	1.6	5.9	2.7	14.3	6.5	26.6	12.1
8 inch Stroke	NA	NA	NA	NA	6.7	3.0	NA	NA	NA	NA
10 inch Stroke	3.9	1.8	5.0	2.3	7.5	3.4	17.7	8.0	32.3	14.7
12 inch Stroke	4.4	2.0	5.7	2.6	8.2	3.8	NA	NA	NA	NA
14 inch Stroke	NA	NA	6.9	3.1	NA	NA	21.1	9.6	NA	NA
18 inch Stroke	NA	NA	7.6	3.5	10.6	4.8	NA	NA	NA	NA
Rear Clevis Mount w/ Pin	0.4	0.2	1.1	0.5	1.9	0.8	5.1	2.3	13.6	6.2
Anti-Rotation (incl. flange)	1.1	0.5	2.6	1.2	5.3	2.4	6.6	3.0	21.0	10.0
External Limit Switch (incl. AR)	1.2	0.5	2.8	1.2	5.6	2.5	6.9	3.1	21.4	9.7
3 inch Stroke	1.4	0.6	3.0	1.4	NA	NA	NA	NA	NA	NA
6 inch Stroke	1.5	0.7	3.2	1.5	6.0	2.7	7.8	3.5	22.2	10.1
8 inch Stroke	NA	NA	NA	NA	6.1	2.8	NA	NA	NA	NA
10 inch Stroke	1.6	0.7	3.5	1.6	6.3	2.8	8.1	3.7	22.4	10.2
12 inch Stroke	1.7	0.8	3.6	1.6	6.4	2.9	NA	NA	NA	NA
14 inch Stroke	NA	NA	3.7	1.7	NA	NA	8.5	3.9	NA	NA
18 inch Stroke	NA	NA	3.9	1.8	6.7	3.1	NA	NA	NA	NA
Splined Main Rod	0.3	0.1	1.0	0.5	2.2	1.0	4.8	2.2	14.8	6.7
Protective Bellows	0.2	0.1	0.3	0.1	0.3	0.2	0.4	0.2	0.9	0.4
Rod Clevis	0.2	0.1	0.5	0.2	1.4	0.6	3.5	1.6	8.2	3.7
Spherical Rod Eye	0.2	0.1	0.2	0.1	0.7	0.3	1.6	0.7	NA	NA
Rod Eye	0.2	0.1	0.3	0.2	1.2	0.5				

Electrical Specifications

Motor Stator		118	138	158	168	218	238	258	268	318*	338*	358*	368*
Bus Voltage	Vrms	115	230	400	460	115	230	400	460	115	230	400	460
Speed @ Bus Voltage	rpm												
RMS SINUSOIDAL COMMUTATION													
Continuous Motor Torque	Ibf-in	16.9	16.8	16.3	16.0	26.9	27.1	26.7	27.0	38.7	38.2	36.2	36.3
	Nm	1.91	1.90	1.84	1.81	3.04	3.06	3.01	3.05	4.37	4.32	4.09	4.10
Torque Constant (Kt)$\left(+\mid-10 \% @ 25^{\circ} \mathrm{C}\right)$	lbf-in/A	4.4	8.7	15.5	17.5	4.4	8.7	15.5	17.5	4.4	8.7	15.6	17.5
	Nm/A	0.49	0.99	1.75	1.97	0.49	0.99	1.75	1.97	0.50	0.98	1.77	1.98
Continuous Current Rating	(Greased) A	4.3	2.2	1.2	1.0	6.9	3.5	1.9	1.7	9.7	4.9	2.6	2.3
	(Oil Cooled) A	8.6	4.3	2.4	2.0	13.8	6.9	3.8	3.4	19.5	9.9	5.2	4.6
Peak Current Rating	A	8.6	4.3	2.4	2.0	13.8	6.9	3.8	3.4	19.5	9.9	5.2	4.6
O-PK SINUSOIDAL COMMUTATION													
Continuous Motor Torque	Ibf-in	16.9	16.8	16.3	16.0	26.9	27.1	26.7	27.0	38.7	38.2	36.2	36.3
	Nm	1.91	1.90	1.84	1.81	3.04	3.06	3.01	3.05	4.37	4.32	4.09	4.10
Torque Constant (Kt)$\text { (+/- 10\% @ } \left.25^{\circ} \mathrm{C}\right)$	lbf-in/A	3.1	6.2	11.0	12.4	3.1	6.2	11.0	12.4	3.1	6.1	11.1	12.4
	Nm/A	0.35	0.70	1.24	1.40	0.35	0.70	1.24	1.40	0.35	0.69	1.25	1.40
Continuous Current Rating:	(Greased) A	6.1	3.0	1.7	1.4	9.7	4.9	2.7	2.4	13.8	7.0	3.7	3.3
	(Oil Cooled) A	12.2	6.1	3.3	2.9	19.5	9.8	5.4	4.9	27.6	13.9	7.3	6.5
Peak Current Rating	A	12.2	6.1	3.3	2.9	19.5	9.8	5.4	4.9	27.6	13.9	7.3	6.5
MOTOR STATOR DATA													
Voltage Constant (Ke)$\left(+\mid-10 \% @ 25^{\circ} \mathrm{C}\right)$	Vrms/Krpm	29.8	59.7	105.8	119.3	29.8	59.7	105.8	119.3	30.3	59.2	106.8	119.8
	Vpk/Krpm	42.2	84.4	149.7	168.7	42.2	84.4	149.7	168.7	42.9	83.7	151.0	169.4
Pole Configuration		8	8	8	8	8	8	8	8	8	8	8	8
Resistance (L-L)(+/-5\% @ $25^{\circ} \mathrm{C}$)	Ohms	2.7	10.8	36.3	47.9	1.1	4.4	14.1	17.6	0.65	2.6	9.3	11.6
Inductance (L-L)(+/- 15\%)	mH	7.7	30.7	96.8	123.0	3.7	14.7	46.2	58.7	2.5	9.5	30.9	38.8
Brake Inertia	lbf-in-sec ${ }^{2}$	0.00033											
	$\mathrm{Kg}-\mathrm{cm}^{2}$	0.38											
Brake Current @ 24 VDC	A	0.5											
Brake Holding Torque	Ibf-in	70											
	Nm	8											
Brake Engage/Disengage Time	ms	19/29											
Mechanical Time Constant (tm), ms	min	4.9	4.9	5.2	5.4	2.0	2.0	2.0	2.0	1.1	1.2	1.3	1.3
	max	9.4	9.5	10.1	10.5	3.9	3.8	3.9	3.8	2.2	2.3	2.5	2.5
Electrical Time Constant (te)	ms	2.9	2.8	2.7	2.6	3.3	3.4	3.3	3.3	3.8	3.7	3.3	3.3
Insulation Class		180 (H)											

[^15]GSX40

Motor Stator		118	138	158	168	218	238	258	268	338*	358*	368*
Bus Voltage	Vrms	115	230	400	460	115	230	400	460	230	400	460
Speed @ Bus Voltage	rpm						3000					
RMS SINUSOIDAL COMMUTATION												
Continuous Motor Torque	Ibf-in	47.5	47.5	45.9	45.4	75.1	78.6	78.7	79.5	106.9	105.3	106.9
	Nm	5.37	5.36	5.19	5.13	8.49	8.89	8.89	8.99	12.08	11.90	12.08
Torque Constant (Kt) (+l-10\% @ $25^{\circ} \mathrm{C}$)	lbf-in/A	4.1	8.2	14.5	16.8	4.1	8.2	14.5	16.8	8.4	14.5	16.8
	Nm/A	0.46	0.93	1.64	1.90	0.46	0.93	1.64	1.90	0.95	1.64	1.90
Continuous Current Rating	(Greased) A	12.9	6.5	3.5	3.0	20.5	10.7	6.0	5.3	14.2	8.1	7.1
	(Oil Cooled) A	25.9	12.9	7.1	6.0	40.9	21.4	12.1	10.6	28.5	16.2	14.2
Peak Current Rating	A	25.9	12.9	7.1	6.0	40.9	21.4	12.1	10.6	28.5	16.2	14.2
O-PK SINUSOIDAL COMMUTATION												
Continuous Motor Torque	Ibf-in	47.5	47.5	45.9	45.4	75.1	78.6	78.7	79.5	106.9	105.3	106.9
	Nm	5.37	5.36	5.19	5.13	8.49	8.89	8.89	8.99	12.08	11.90	12.08
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	lbf-in/A	2.9	5.8	10.3	11.9	2.9	5.8	10.3	11.9	5.9	10.3	11.9
	Nm/A	0.33	0.66	1.16	1.34	0.33	0.66	1.16	1.34	0.67	1.16	1.34
Continuous Current Rating	(Greased) A	18.3	9.1	5.0	4.3	28.9	15.1	8.5	7.5	20.1	11.4	10.1
	(Oil Cooled) A	36.6	18.3	10.0	8.6	57.9	30.3	17.1	15.0	40.3	22.9	20.1
Peak Current Rating	A	36.6	18.3	10.0	8.6	57.9	30.3	17.1	15.0	40.3	22.9	20.1
MOTOR STATOR DATA												
Voltage Constant (Ke) (+/- 10% @ $25^{\circ} \mathrm{C}$)	Vrms/Krpm	28.0	56.0	99.3	114.6	28.0	56.0	99.3	114.6	57.3	99.3	114.6
	Vpk/Krpm	39.6	79.2	140.5	162.1	39.6	79.2	140.5	162.1	81.0	140.5	162.1
Pole Configuration		8	8	8	8	8	8	8	8	8	8	8
Resistance (L-L)(+/-5\% @ $25^{\circ} \mathrm{C}$)	Ohms	0.42	1.7	5.7	7.8	0.2	0.72	2.26	3.0	0.5	1.52	2.0
Inductance (L-L)(+/- 15\%)	mH	3.0	11.9	37.5	49.9	1.2	5.4	18.2	23.1	4.0	12.0	16.0
Brake Inertia	lbf-in-sec ${ }^{2}$	0.00096										
	$\mathrm{Kg}-\mathrm{cm}^{2}$	1.08										
Brake Current @ 24 VDC	A	0.67										
Brake Holding Torque	Ibf-in	97										
	Nm	11										
Brake Engage/Disengage Time	ms	20/29										
Mechanical Time Constant (tm), ms	min	4.5	4.5	4.8	4.9	2.1	1.9	1.9	1.9	1.2	1.3	1.2
	max	6.0	6.0	6.4	6.6	2.8	2.6	2.6	2.5	1.7	1.7	1.7
Electrical Time Constant (te)	ms	7.0	7.0	6.6	6.4	5.9	7.5	8.0	7.8	8.2	7.9	8.2
Insulation Class		180 (H)										

*Refer to performance specifications on page 8 for availability of 3 stack stator by stroke/lead combination. Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient.

GSX50

Motor Stator		138	158	168	238	258	268	338	358	368
Bus Voltage	Vrms	230	400	460	230	400	460	230	400	460
Speed @ Bus Voltage	rpm					2400				
RMS SINUSOIDAL COMMUTATION										
Continuous Motor Torque	Ibf-in	107.2	104.8	109.4	179.9	178.8	177.8	233.3	237.2	238.3
	Nm	12.12	11.84	12.36	20.32	20.20	20.09	26.36	26.80	26.93
Torque Constant (Kt)$\text { (+/- 10\% @ } 25^{\circ} \mathrm{C} \text {) }$	lbf-in/A	11.8	20.2	23.6	11.8	20.2	23.6	12.0	20.2	24.0
	Nm / A	1.33	2.28	2.67	1.33	2.28	2.67	1.36	2.28	2.71
Continuous Current Rating	(Greased) A	10.2	5.8	5.2	17.0	9.9	8.4	21.7	13.1	11.1
	(Oil Cooled) A	20.3	11.6	10.4	34.1	19.8	16.8	43.4	26.2	22.2
Peak Current Rating	A	20.3	11.6	10.4	34.1	19.8	16.8	43.4	26.2	22.2
O-PK SINUSOIDAL COMMUTATION										
Continuous Motor Torque	Ibf-in	107.2	104.8	109.4	179.9	178.8	177.8	233.3	237.2	238.3
	Nm	12.12	11.84	12.36	20.32	20.20	20.09	26.36	26.80	26.93
Torque Constant (Kt) (+l-10\%@ $25^{\circ} \mathrm{C}$)	lbf-in/A	8.3	14.3	16.7	8.3	14.3	16.7	8.5	14.3	17.0
	Nm/A	0.94	1.62	1.88	0.94	1.62	1.88	0.96	1.62	1.92
Continuous Current Rating	(Greased) A	14.4	8.2	7.3	24.1	14.0	11.9	30.7	18.5	15.7
	(Oil Cooled) A	28.7	216.4	14.7	48.2	27.9	23.8	61.4	37.1	31.4
Peak Current Rating	A	28.7	16.4	14.7	48.2	27.9	23.8	61.4	37.1	31.4
MOTOR STATOR DATA										
Voltage Constant (Ke) (+l-10\% @ $25^{\circ} \mathrm{C}$)	Vrms/Krpm	80.6	138.1	161.1	80.6	138.1	161.1	82.0	138.1	164.0
	Vpk/Krpm	113.9	195.3	227.9	113.9	195.3	227.9	116.0	195.3	232.0
Pole Configuration		8	8	8	8	8	8	8	8	8
Resistance (L-L)(+/-5\% @ $25^{\circ} \mathrm{C}$)	Ohms	0.87	2.68	3.34	0.34	1.01	1.39	0.22	0.61	0.86
Inductance (L-L)(+/- 15\%)	mH	21.7	63.9	78.3	8.9	27.6	41.5	6.3	17.8	28.2
Brake Inertia	lbf-in-sec ${ }^{2}$	0.0084								
	$\mathrm{Kg}-\mathrm{cm}^{2}$	9.5								
Brake Current @ 24 VDC	A	1								
Brake Holding Torque	lbf-in	354								
	Nm	40								
Brake Engage/Disengage Time	ms	25/73								
Mechanical Time Constant (tm), ms	min	2.2	2.3	2.1	0.9	0.9	0.9	0.5	0.5	0.5
	max	2.8	3.0	2.7	1.1	1.1	1.1	0.7	0.7	0.7
Electrical Time Constant (te)	ms	25.0	23.9	23.4	26.1	27.3	29.9	28.0	29.0	32.9
Insulation Class		180 (H)								

Test data derived using NEMA recommended aluminum heatsink 12 " $\times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient

[^16]
GSX60

Motor Stator		138	158	168	238	258	268	358	368
Bus Voltage	Vrms	230	400	460	230400		460	400	460
Speed @ Bus Voltage	rpm	2400							
RMS SINUSOIDAL COMMUTATION									
Continuous Motor Torque	Ibf-in	254.2	249.9	261.9	424.8	423.0	427.5	595.6	615.0
	Nm	28.72	28.23	29.59	47.99	47.79	48.30	67.29	69.49
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	lbf-in/A	12.6	21.8	25.2	12.6	21.8	25.2	21.4	25.2
	Nm/A	1.42	2.46	2.84	1.42	2.46	2.84	2.42	2.84
Continuous Current Rating	(Greased) A	22.6	12.8	11.6	37.7	21.7	19.0	31.1	27.3
	(Oil Cooled) A	45.2	25.6	23.3	75.5	43.4	38.0	62.2	54.6
Peak Current Rating	A	45.2	25.6	23.3	75.5	43.4	38.0	62.2	54.6
O-PK SINUSOIDAL COMMUTATION									
Continuous Motor Torque	Ibf-in	254.2	249.9	261.9	424.8	423.0	427.5	595.6	611.6
	(Nm)	28.72	28.23	29.59	47.99	47.79	48.30	67.29	69.10
Torque Constant (Kt)$\left(+\mid-10 \% @ 25^{\circ} \mathrm{C}\right)$	lbf-in/A	8.9	15.4	17.8	8.9	15.4	17.8	15.1	17.8
	Nm/A	1.01	1.74	2.01	1.01	1.74	2.01	1.71	2.01
Continuous Current Rating	(Greased) A	31.9	18.1	16.4	53.4	30.7	26.8	44.0	38.4
	(Oil Cooled) A	63.9	36.2	32.9	106.7	61.3	53.7	88.0	76.8
Peak Current Rating	A	63.9	36.2	32.9	106.7	61.3	53.7	88.0	76.8
MOTOR STATOR DATA									
Voltage Constant (Ke)$\text { (+/- 10\% @ } 25^{\circ} \mathrm{C} \text {) }$	Vrms/Krpm	85.9	148.9	171.8	85.9	148.9	171.8	146.1	171.8
	Vpk/Krpm	121.5	210.6	243.0	121.5	210.6	243.0	206.6	243.0
Pole Configuration		8	8	8	8	8	8	8	8
Resistance (L-L)(+/-5\% @ $25^{\circ} \mathrm{C}$)	Ohms	0.3	1.0	1.2	0.13	0.41	0.5	0.23	0.3
Inductance (L-L)(+/- 15\%)	mH	8.3	24.8	29.4	3.9	11.8	15.8	7.5	10.3
Brake Inertia	lbf-in-sec ${ }^{2}$	0.02815							
	$\mathrm{Kg}-\mathrm{cm}^{2}$	31.8							
Brake Current @ 24 VDC	A	1.45							
Brake Holding Torque	Ibf-in	708							
	Nm	80							
Brake Engage/Disengage Time	ms	53/97							
Mechanical Time Constant (tm), ms	min	3.9	4.0	3.6	1.6	1.6	1.6	1.0	0.9
	max	4.3	4.5	4.1	1.8	1.8	1.8	1.1	1.0
Electrical Time Constant (te)	ms	25.4	24.6	24.0	29.4	29.1	29.8	32.1	33.8
Insulation Class		180 (H)							

Test data derived using NEMA recommended aluminum heatsink $16^{\prime \prime} \times 16^{\prime \prime} \times 1^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient
The GSX60-06 can only accommodate a single stack stator.

GSX Series Integrated Motor/Actuator

Estimated Service Life

GSX30

GSX50

Service Life-millions of inches (mm)

The L_{10} expected life of a roller screw linear actuator is expressed as the linear travel distance that 90% of properly maintained roller screws manufactured are expected to meet or exceed. This is not a guarantee and these charts should be used for estimation purposes only.

The underlying formula that defines this value is:
Travel life in millions of inches, where:
$C_{a}=$ Dynamic load rating (lbf)
$F_{\mathrm{cml}}=$ Cubic mean applied load (lbf) $\quad L_{10}=\left(\frac{C_{a}}{F_{\mathrm{cm}}}\right)^{3} \times \ell$
$\ell=$ Roller screw lead (inches)
For additional details on calculating estimated service life, please refer to the Engineering Reference in the back of the book.

GSX Series Integrated Motor/Actuator

Speed vs. Force Curves

These charts represent typical linear speed versus linear force curves for the GSX actuators using common brushless motor amplifiers. The GSX Series are compatible with many different brushless motor amplifiers; any differences in the performance ratings of these amplifiers can alter the actuator's performance. Thus, the curves below should be used for estimation only. (Further information is available by contacting your local sales representative.)

[^17]
GSX Series Integrated Motor/Actuator

Terminal Box Wiring Diagram

Note 1: Thermal switch normally closed;
opens when stator temp exceeds 130 deg. C

Low Volt Terminal Block- Rockwell 1492-L3		Low Volt Terminal Block- Rockwell 1492-L6	
Voltage Rating	600 VAC/DC	Voltage Rating	600 VAC/DC
Current Rating	27 Amps	Current Rating	50 Amps
Wire Gauge Range	$26-12$ AWG	Wire Gauge Range	$20-8$ AWG

Terminal Box Dimensions

Connections
$\mathrm{T}=$ Terminal box with NPT ports
Options
$\mathrm{NI}=$ Non-Incendive

Dimensions

GSX30 Single, Double Side Mounts or Extended Tie Rod Mount with Class 1 Division 2 Option

GSX30 Side Trunnion Mount with Class 1 Division 2 Option

GSX30 Rear Clevis Mount or Front Flange Mount with Class 1 Division 2 Option

Dim	3 in $(76 \mathrm{~mm})$ Stroke in (mm)	6 in $(152 \mathrm{~mm})$ Stroke in (mm)	10 in $(254 \mathrm{~mm})$ Stroke in (mm)	12 in $(305 \mathrm{~mm})$ Stroke in (mm)	14 in $(355 \mathrm{~mm})$ Stroke in (mm)	18 in $(457 \mathrm{~mm})$ Stroke in (mm)
A	$8.2(209)$	$10.7(272)$	$15.2(387)$	$17.2(437)$	$19.2(488)$	$23.2(590)$
B	$6.1(156)$	$8.6(219)$	$13.1(333)$	$15.1(384)$	$17.1(435)$	$21.1(536)$
C	$5.4(137)$	$8.0(203)$	$10.0(254)$	$12.0(305)$	$14.0(356)$	$18.0(457)$
D	$9.5(241)$	$12.0(304)$	$16.5(418)$	$18.5(469)$	$20.5(520)$	$24.5(621)$

Note: Add 1.6 Inches (40.64 mm) to Dims "A \& D" if ordering a Brake. Applications with $>20 \mathrm{~A}$ rms will require the larger terminal box.

* If " G " metric clevis option, $\varnothing 20 \mathrm{~mm}+0.00 /-0.07$

Drawings subject to change. Consult Exlar for certified drawings.

GSX40 Single, Double Side Mounts or Extended Tie Rod Mount with Class 1 Division 2 Option

GSX40 Side Trunnion Mount with Class 1 Division 2 Option

GSX40 Rear Clevis Mount or Front Flange Mount with Class 1 Division 2 Option

$\begin{array}{l}\text { 12 in }(305 \mathrm{~mm}) \\ \text { Stroke in }(\mathrm{mm})\end{array}$	$\begin{array}{c}18 \text { in }(457 \mathrm{~mm}) \\ \text { Stroke in }(\mathrm{mm})\end{array}$
$48.8(472)$	$24.6(624)$
$16.3(414)$	$22.3(567)$
$12.0(305)$	$18.0(457)$
$20.3(516)$	$26.3(669)$

Note: Add 2.33 Inches (59.18 mm) to Dims "A \& D" if ordering a Brake.
Applications with $>20 \mathrm{~A}$ rms will require the larger terminal box.

* If " G " metric clevis option, $\varnothing 20 \mathrm{~mm}+0.00 /-0.07$

Drawings subject to change. Consult Exlar for certified drawings.

GSX Series Integrated Motor/Actuator

GSX50 Single, Double Side Mounts or Extended Tie Rod Mount with Class 1 Division 2 Option

1. Three mounting styles shown
2. Shown view is standard side for single side mount

* If "M" metric tie rod option, thread $=$ M8 $\times 1.25$
* If "J" or "K" metric side mount options, M12 x 1.75 ป 19 mm with $\varnothing 12 \mathrm{~mm}$ M7 $\downarrow 12 \mathrm{~mm}$ Dowel Hole

GSX50 Side Trunnion Mount with Class 1 Division 2 Option

GSX50 Rear Clevis Mount or Front Flange Mount with Class 1 Division 2 Option

Dim	6 in $(152 \mathrm{~mm})$ Stroke in (mm)	10 in $(254 \mathrm{~mm})$ Stroke in (mm)	14 in $(355 \mathrm{~mm})$ Stroke in (mm)
A	$14.3(364)$	$18.3(465)$	$22.3(567)$
B	$11.1(282)$	$15.1(384)$	$19.1(486)$
C	$6.0(152)$	$10.0(254)$	$14.0(356)$
D	$16.6(421)$	$20.6(522)$	$24.6(624)$

[^18]Note: Add 2.5 Inches to Dims "A \& D" if ordering a Brake.

* If " G " metric clevis option, $\varnothing 27 \mathrm{~mm}+0.00 /-0.06$

Drawings subject to change. Consult Exlar for certified drawings.

GSX60 Single, Double Side Mounts or Extended Tie Rod Mount with Class 1 Division 2 Option

1. Three mounting styles shown

GSX60 Side Trunnion Mount with Class 1 Division 2 Option

GSX60 Rear Clevis Mount or Front Flange Mount with Class 1 Division 2 Option

Note: Add 3.575 Inches to Dims "A \& D" if ordering a Brake.

* If "G" metric clevis option, $\varnothing 45 \mathrm{~mm}+0.00 /-0.08$

Drawings subject to change. Consult Exlar for certified drawings.

Sample Product Number: GSX30-0603-TFA-KM5-2B8-30-SDXL
(Class 1, Division 2)

D = Connections	H = Motor Stacks
T = Terminal box with NPT ports	1 = 1 stack magnets
	$2=2$ stack magnets
$E=$ Mounting	$3=3$ stack magnets
$C=$ Rear clevis	
$F=$ Front flange	I = Voltage Rating
$\mathrm{R}=$ Rear flange	$\mathrm{A}=24 \mathrm{~V} \mathrm{DC}$
D = Double side mount	$\mathrm{B}=48 \mathrm{~V} \mathrm{DC}$
T = Side trunnion	$C=120 \mathrm{~V} D C$
$\mathrm{E}=$ Extended tie rods	$1=115$ Volt RMS
$\mathrm{K}=$ Metric double side mount	$3=230$ Volt RMS
$Q=$ Metric side trunnion	$5=400$ Volt RMS
$\mathrm{M}=$ Metric extended tie rods	$6=460$ Volt RMS
$\mathrm{G}=$ Metric rear clevis	
	J = Motor Poles
F $=$ Rod End	$8=8$ motor poles
$\mathrm{M}=$ Male, US std thread	
A $=$ Male, metric thread	KK = Motor Speed
$\mathrm{F}=$ Female, US std thread	$24=2400 \mathrm{rpm}, \mathrm{GSX} / \mathrm{M} 50, \mathrm{GSX} 60$
$B=$ Female, metric thread	$30=3000 \mathrm{rpm}, \mathrm{GSX} / \mathrm{M} 30,40$
GGG = Feedback Type See page 89 for detailed information	MM = Mechanical Options
	$\mathrm{NI}=$ Non-incendive construction required for Class 1, Division 2
	AR = External anti-rotate
	$\mathrm{RB}=$ Rear electric brake
	$\mathrm{PB}=$ Protective bellows ${ }^{2}$

NOTES:

1. 0.75 inch $(19.05 \mathrm{~mm})$ lead $\mathrm{N} /$ A over 12 inch $(450 \mathrm{~mm})$ stroke.
2. Not available with extended tie rod mounting option.

For options or specials not listed above or for
extended temperature operation, please contact Exlar

SLM Series Motors/SLG Series Gearmotors

SLM/SLG SERIES

BRUSHLESS AC OR DC SERVO MOTOR / INTEGRATED SERVO GEARMOTOR
Compatible with virtually any manufacturer's servo drive
Multiple frame size options

SLM Series Motors and SLG Series Integrated Gearmotors

Description

Brushless servo motor and gearmotor technology from Exlar provides one of the highest torque-to-size ratio available in motion control today. Small size, outstanding performance specifications, quality and customization capabilities offer you the right solution for your motion control application.

Unique T-LAM Stator Design Advantage

This innovative design offers several advantages over traditional motor winding for a more efficient and powerful motor.

Built for durability, T-LAM segmented lamination stator technology consists of individual segments, each containing individual phase wiring for maximum motor performance. The robust insulation, high coercive strength magnets, and complete thermal potting provide a more robust motor design, a design yielding a 35 to 70% torque increase in the same package size! T-LAM motor designs have Class 180 H insulation systems and UL recognition.

Standard Features	
SLM Motor	IP65S sealing
	Right angle rotatable connectors.
	Feedback configurations for nearly all servo amplifiers
	Anodized housings
	Class 180H insulation system
$\begin{aligned} & \text { SLG } \\ & \text { Gearmotor } \end{aligned}$	All features of SLM motor shown above plus...
	High side load bearing design
	Integrated armature and sungear
	Higher stiffess than bolt-on gearhead and motor
	10 arc minute standard backlash, single stage; 13 arc minute standard backlash, dual stage
	Single and double reduction ratios: $4: 1,5: 1,10: 1,16: 1,20: 1,25: 1,40: 1,50: 1$, and 100:1

Very High Torque Density

T-LAM technology produces an efficient and powerful motor in a very small package.

- 60 mm SLM060 offers continuous torque up to 15 Ibf-in and base speed of 5000 rpm .
- 75 mm SLM075 offers continuous torque up to 36 lbf-in and base speed of 4000 rpm .
- 90 mm SLM090 offers continuous torque up to 56 Ibf-in and base speed of 4000 rpm .
- 115 mm SLM115 offers continuous torque up to 176 Ibf-in and base speed of 3000 rpm .
- 142 mm SLM142 offers continuous torque up to 237 lbf-in and base speed of 2400 rpm .
- 180 mm SLM180 offers continuous torque up to 612 lbf-in and base speed of 2400 rpm .

SLM Series Motors/SLG Series Gearmotors

Product Features

SLM Series Motors/SLG Series Gearmotors

Electrical and Mechanical Specifications

SLM/SLG075

Motor Stator		118	138	158	168	218	238	258	268	318	338	358	368
Voltage Rating	Vrms	115	230	400	460	115	230	400	460	115	230	400	460
Speed @ Bus Voltage	rpm												
RMS SINUSOIDAL COMMUTATION													
Continuous Motor Torque	Ibf-in	16.6	16.4	16.3	16.0	26.0	26.4	26.2	26.4	37.9	35.9	37.3	36.4
	Nm	1.88	1.85	1.84	1.81	2.94	2.89	2.96	2.98	4.29	4.05	4.21	4.12
Peak Motor Torque	Ibf-in	33.3	32.8	32.6	32.1	52.0	52.7	52.4	52.8	75.9	71.7	74.6	72.9
	Nm	3.76	3.70	3.68	3.62	5.88	5.96	5.92	5.96	8.57	8.10	8.43	8.23
$\begin{aligned} & \text { Torque Constant (Kt) } \\ & \left(+1-10 \% @ 25^{\circ} \mathrm{C}\right) \end{aligned}$	lbf-in/A	3.4	6.6	12.5	13.1	3.7	6.8	11.6	13.5	3.4	6.8	11.6	13.9
	Nm/A	0.4	0.7	1.4	1.5	0.4	0.8	1.3	1.5	0.4	0.8	1.3	1.6
Continuous Current Rating	A	5.5	2.8	1.5	1.4	7.9	4.4	2.5	2.2	12.5	5.9	3.6	2.9
Peak Current Rating	A	11.0	5.6	2.9	2.7	15.9	8.7	5.1	4.4	25.1	11.8	7.2	5.8
O-PEAK SINUSOIDAL COMMUTATION													
Continuous Motor Torque	Ibf-in	16.6	16.4	16.3	16.0	26.0	26.4	26.2	26.4	37.9	35.9	37.3	36.4
	Nm	1.88	1.85	1.84	1.81	2.94	2.98	2.96	2.98	4.29	4.05	4.21	4.12
Peak Motor Torque	Ibf-in	33.3	32.8	32.6	32.1	52.0	52.7	52.4	52.8	75.9	71.7	74.6	72.9
	Nm	3.76	3.70	3.68	3.62	5.88	5.96	5.92	5.96	8.57	8.10	8.43	8.23
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	lbf-in/A	2.4	4.6	8.8	9.3	2.6	4.8	8.2	9.6	2.4	4.8	8.2	9.9
	Nm/A	0.3	0.5	1.0	1.0	0.3	0.5	0.9	1.1	0.3	0.5	0.9	1.1
Continuous Current Rating	A	7.8	4.0	2.1	1.9	11.2	6.2	3.6	3.1	17.7	8.4	5.1	4.1
Peak Current Rating	A	15.6	7.9	4.1	3.9	22.4	12.3	7.2	6.2	35.5	16.8	10.1	8.3
MOTOR STATOR DATA													
Voltage Constant (Ke)	Vrms/Krpm	23.1	44.7	85.2	89.5	25.0	46.2	78.9	92.4	23.1	46.2	79.4	95.3
(+/-10\% @ $25^{\circ} \mathrm{C}$)	Vpk/Krpm	32.7	63.3	120.4	126.5	35.4	65.3	111.6	130.6	32.7	65.3	112.3	134.7
Pole Configuration		8	8	8	8	8	8	8	8	8	8	8	8
Resistance (L-L)(+/-5\% @ $25^{\circ} \mathrm{C}$)	Ohms	1.66	6.42	23.49	26.84	0.83	2.75	8.15	11.01	0.40	1.77	4.83	7.29
Inductance (L-L)(+/-15\%)	mH	4.6	17.3	62.6	69.2	2.6	8.8	25.7	35.2	1.4	5.8	17.0	24.5
SLM Armature Inertia	lbf-in- $\sec ^{2}(+/-5 \%)$	0.00054				0.00097				0.00140			
	$\mathrm{Kg}-\mathrm{cm}^{2}$	0.616				1.100				1.583			
Brake Inertia	lbfin- $\sec ^{2}$	0.000159				0.000159				0.000159			
	$\mathrm{Kg}-\mathrm{cm}^{2}$	0.18				0.18				0.18			
Brake Current @ 25 VDC	A	0.5				0.5				0.5			
Brake Holding Torque	Ibf-in	40				40				40			
	Nm	4.5				4.5				4.5			
Brake Engage/Disengage Time	ms	9/35				9/35				9/35			
Mechanical Time Constant (tm)	ms	1.71	1.77	1.79	1.85	1.31	1.27	1.29	1.27	1.05	1.18	1.09	1.14
Electrical Time Constant (te)	ms	2.78	2.69	2.67	2.58	3.11	3.19	3.15	3.20	3.65	3.26	3.53	3.37
Friction Torque	lbf-in (Nm)	0.51 (0.058)				0.67 (0.075)				0.90 (0.101)			
Insulation Class		180 (H)											
Insulation System Volt Rating	Vrms												
Environmental Rating		IP65S											

For amplifiers using peak sinusoidal ratings, multiply RMS sinusoidal Kt by 0.707 and current by 1.414 .

Gearmotor Data

	1 Stack Motor	2 Stack Motor	3 Stack Motor	*Add armature inertia to gearing inertia for total SLG system inertia
SLG Armature Inertia* Ibf-in-sec ${ }^{2}\left(\mathrm{Kg}-\mathrm{cm}^{2}\right)$	0.000660 (0.7450)	0.001068 (1.2057)	0.001494 (1.6868)	
SLM Armature Inertia* Ibf-in- $\mathrm{sec}^{2}\left(\mathrm{Kg}-\mathrm{cm}^{2}\right)$	0.000545 (0.6158)	0.000973 (1.0996)	0.001401 (1.5834)	Test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 3 / 8^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient
GEARING REFLECTED INERTIA	SINGLE REDUCTION			
	Gear Stages	Ibf-in-sec ${ }^{2}$	($\mathrm{Kg}-\mathrm{cm}^{2}$)	
	4:1	0.0000947	(0.1069)	
	5:1	0.0000617	(0.0696)	
	10:1	0.0000165	(0.0186)	
Backlash at 1% rated torque		10 Arc minutes ency: Single reduction		

SLM Series Motors/SLG Series Gearmotors

SLM/SLG090

Motor Stator		118	138	158	168	218	238	258	268	338	358	368
Voltage Rating	Vrms	115	230	400	460	115	230	400	460	230	400	460
Speed @ Bus Voltage	rpm						4000					
RMS SINUSOIDAL COMMUTATION DATA												
Continuous Motor Torque	lbf-in	23.8	24.0	23.7	24.7	39.6	40.0	39.5	39.9	55.7	55.4	55.7
	Nm	2.68	2.71	2.67	2.79	4.47	4.52	4.46	4.51	6.30	6.26	6.30
Peak Motor Torque	lbf-in	47.5	48.0	47.3	49.4	79.1	80.0	79.0	79.9	111.5	110.9	111.5
	Nm	5.37	5.42	5.35	5.58	8.94	9.04	8.93	9.02	12.59	12.52	12.59
Torque Constant (Kt) (+/- 10% @ $25^{\circ} \mathrm{C}$)	\|bf-in/A	3.2	6.6	11.6	13.2	3.2	6.6	11.6	13.2	6.6	11.6	13.1
	Nm/A	0.37	0.7	1.3	1.5	0.4	0.7	1.3	1.5	0.7	1.3	1.5
Continuous Current Rating	A	8.2	4.0	2.3	2.1	13.6	6.8	3.8	3.4	9.5	5.3	4.8
Peak Current Rating	A	16.4	8.1	4.6	4.2	27.3	13.5	7.6	6.7	19.0	10.7	9.5
O-PK SINUSOIDAL COMMUTATION DATA												
Continuous Motor Torque	lbf-in	23.8	24.0	23.7	24.7	39.6	40.0	39.5	39.9	55.7	55.4	55.7
	Nm	2.68	2.71	2.67	2.79	4.47	4.52	4.46	4.51	6.30	6.26	6.30
Peak Motor Torque	lbf-in	47.5	48.0	47.3	49.4	79.1	80.0	79.0	79.9	115.5	110.9	111.5
	Nm	5.37	5.42	5.35	5.58	8.94	9.04	8.93	9.02	12.59	12.52	12.59
Torque Constant (Kt) (+/- 10\% @ 25 ${ }^{\circ}$)	lbf-in/A	2.3	4.7	8.2	9.4	2.3	4.7	8.2	9.4	4.6	8.2	9.3
	Nm/A	0.26	0.5	0.9	1.1	0.3	0.5	0.9	1.1	0.5	0.9	1.0
Continuous Current Rating	A	11.6	5.7	3.2	2.9	19.3	9.5	5.4	4.8	13.4	7.5	6.7
Peak Current Rating	A	23.2	11.4	6.5	5.9	38.6	19.1	10.8	9.5	26.9	15.1	13.4
MOTOR DATA												
Voltage Constant (Ke) (+/- 10% @ $25^{\circ} \mathrm{C}$)	Vrms/Krpm	22.1	45.2	78.9	90.4	22.1	45.2	78.9	90.4	44.7	79.4	89.5
	Vpk/Krpm	31.3	64.0	111.6	127.9	31.3	64.0	111.6	127.9	63.3	112.3	126.5
Pole Configuration		8	8	8	8	8	8	8	8	8	8	8
Resistance (L-L)(+/-5\% @ $25^{\circ} \mathrm{C}$)	Ohms	0.75	3.06	9.57	11.55	0.30	1.21	3.78	4.86	0.69	2.19	2.75
Inductance (L-L)(+/- 15\%)	mH	6.1	25.6	78.0	88.6	2.9	10.5	37.2	43.1	6.6	24.7	31.4
SLM Armature Inertia$\text { (+\|- } 5 \%)$	lbf-in-sec ${ }^{2}$	0.00054				0.00097				0.00140		
	$\mathrm{Kg}-\mathrm{cm}^{2}$	0.609				1.09				1.58		
Brake Inertia	lbf-in-sec ${ }^{2}$	0.00096				0.00096				0.00096		
	$\mathrm{Kg}-\mathrm{cm}^{2}$	1.08				1.08				1.08		
Brake Current @ 24 VDC	A	0.67				0.67				0.67		
Brake Holding Torque	Ibf-in (Nm)	97 (11)				97 (11)				97 (11)		
Brake Engage/Disengage Time	ms	20/29				20/29				20/29		
Mechanical Time Constant (tm)	ms	0.83	0.82	0.84	0.77	0.59	0.58	0.59	0.58	0.48	0.49	0.48
Electrical Time Constant (te)	ms	8.21	7.31	8.14	7.67	9.88	8.66	9.85	8.88	9.57	11.30	11.43
Friction Torque	Ibf-in (Nm)	0.68 (0.077)				0.85 (0.095)				1.06 (0.119)		
Insulation Class		180 (H)										
Insulation System Volt Rating	Vrms						460					
Environmental Rating		IP65S										

For amplifiers using peak sinusoidal ratings, multiply RMS sinusoidal Kt by 0.707 and current by 1.414 .

Gearmotor Data

	1 Stack Motor		2 Stack Motor		3 Stack Motor	
SLG Armature Inertia* Ibf-in-sec ${ }^{2}\left(\mathrm{Kg}-\mathrm{cm}^{2}\right)$	0.00114 (1.29)		0.00157 (1.77)		0.00200 (2.26)	
GEARING REFLECTED INERTIA	SINGLE REDUCTION			DOUBLE REDUCTION		
	Gear Stages	lbf-in-sec ${ }^{2}$	$\left(\mathrm{Kg}-\mathrm{cm}^{2}\right)$	Gear Stages	Ibf-in-sec ${ }^{2}$	($\mathrm{Kg}-\mathrm{cm}^{2}$)
	4:1	0.000154	(0.174)	16:1	0.000115	(0.130)
	5:1	0.000100	(0.113)	20:1, $25: 1$	0.0000756	(0.0854)
	10:1	0.0000265	(0.0300)	40:1, 50:1, 100:1	0.0000203	(0.0230)
Backlash at 1% rated torque	10 Arc minutes Efficiency: Single reduction 91%			13 Arc minutes Double Reduction: 86\%		

[^19]
SLM Series Motors/SLG Series Gearmotors

SLM/SLG115

Motor Stator		118	138	158400	$\begin{aligned} & 168 \\ & 460 \end{aligned}$	$\begin{array}{r} 238 \\ \hline 230 \end{array}$	$\begin{aligned} & 258 \\ & \hline 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 268 \\ & \hline 460 \end{aligned}$	$\begin{array}{r} 338 \\ \hline 230 \end{array}$	$\begin{aligned} & 358 \\ & 400 \end{aligned}$	$\begin{array}{r} 368 \\ \hline 460 \end{array}$
Voltage Rating	Vrms	115	230								
Speed @ Bus Voltage	rpm	3000									
RMS SINUSOIDAL COMMUTATION DATA											
Continuous Motor Torque	Ibf-in	74.1	74.1	74.3	74.1	123.6	121.4	123.8	172.3	168.9	176.9
	Nm	8.37	8.37	8.39	8.37	13.96	13.72	13.96	19.46	19.09	19.98
Peak Motor Torque	Ibf-in	148.2	148.2	148.6	148.1	247.2	242.8	247.2	344.5	337.8	353.7
	Nm	16.74	16.74	16.79	16.74	27.93	27.43	27.93	38.93	38.17	39.96
Torque Constant (Kt)	lbf-in/A	4.3	8.7	15.7	17.3	8.7	15.8	17.3	8.5	15.8	17.5
(+/-10\% @ $25^{\circ} \mathrm{C}$)	Nm/A	0.49	1.0	1.8	2.0	1.0	1.8	2.0	1.0	1.8	2.0
Continuous Current Rating	A	19.1	9.5	5.3	4.8	15.9	8.6	8.0	22.7	11.9	11.3
Peak Current Rating	A	38.2	19.1	10.6	9.5	31.8	17.1	15.9	45.4	23.8	22.5
O-PK SINUSOIDAL COMMUTATI	ON DATA										
Continuous Motor Torqu	Ibf-in	74.1	74.1	74.3	74.1	123.6	121.4	123.6	172.3	168.9	176.9
Coninuous Motor Torque	Nm	8.37	8.37	8.39	8.37	13.96	13.72	13.96	19.46	19.09	19.98
	Ibf-in	148.2	148.2	148.6	148.1	247.2	242.8	247.2	344.5	337.8	353.7
Peak Motor Torque	Nm	16.74	16.74	16.79	16.74	27.93	27.43	27.93	38.93	38.17	39.96
Torque Constant (Kt)	lbf-in/A	3.1	6.1	11.1	12.3	6.1	11.2	12.3	6.0	11.2	12.4
(+/-10\% @ $25^{\circ} \mathrm{C}$)	(Nm / A)	0.35	0.7	1.3	1.4	0.7	1.3	1.4	0.7	1.3	1.4
Continuous Current Rating	A	27.0	13.5	7.5	6.7	22.5	12.1	11.3	32.1	16.9	15.9
Peak Current Rating	A	54.0	27.0	15.0	13.5	45.0	24.2	22.5	64.2	33.7	31.9
MOTOR DATA											
Voltage Constant (Ke)	Vrms/Krpm	29.6	59.2	106.9	118.5	59.2	108.2	118.5	58.0	108.2	119.8
(+/-10\% @ $25^{\circ} \mathrm{C}$)	Vpk/Krpm	41.9	83.8	151.2	167.6	83.8	153.0	167.6	82.0	153.0	169.4
Pole Configuration		8	8	8	8	8	8	8	8	8	8
Resistance (L-L)(+/-5\% @ $25^{\circ} \mathrm{C}$)	Ohms	0.20	0.80	2.60	3.21	0.34	1.17	1.35	0.20	0.72	0.81
Inductance (L-L)(+/-15\%)	mH	3.3	13.0	42.4	52.1	5.9	21.1	25.3	4.0	13.1	17.1
SLM Armature Inertia	$1 \mathrm{bf}-\mathrm{in}-\mathrm{sec}^{2}$						0.00620			0.00899	
(+\|-5\%)	$\mathrm{Kg}-\mathrm{cm}^{2}$						7.00			10.14	
Brake Inertia	$1 \mathrm{lbf-in}-\mathrm{sec}^{2}$						0.00327			0.0032	
	$\mathrm{Kg}-\mathrm{cm}^{2}$						3.70			3.70	
Brake Current @ 24 VDC	A						0.75			0.75	
Brake Holding Torque	Ibf-in (Nm)						195 (22)			195 (22)	
Brake Engage/Disengage Time	ms						25/50			25/50	
Mechanical Time Constant (tm)	ms	0.80	0.80	0.79	0.80	0.61	0.63	0.61	0.54	0.56	0.51
Electrical Time Constant (te)	ms	16.26	16.26	16.34	16.25	17.6	18.06	18.72	18.5	18.14	21.16
Friction Torque	lbf-in (Nm)						81 (0.204			. 32 (0.2	
Insulation Class											
Insulation System Volt Rating	Vrms										
Environmental Rating											

For amplifiers using peak sinusoidal ratings, multiply RMS sinusoidal Kt by 0.707 and current by 1.414.
Gearmotor Data

	1 Stack Motor		2 Stack Motor		3 Stack Motor	
SLG Armature Inertia* Ibf-in-sec ${ }^{2}\left({\mathrm{Kg}-\mathrm{cm}^{2}}^{\text {) }}\right.$	0.00662 (7.47)		0.00945 (10.67)		0.01228 (13.86)	
GEARING REFLECTED INERTIA	SINGLE REDUCTION			DOUBLE REDUCTION		
	Gear Stages	Ibf-in-sec ${ }^{2}$	$\left(\mathrm{Kg}-\mathrm{cm}^{2}\right)$	Gear Stages	lbf-in-sec ${ }^{2}$	$\left(\mathrm{Kg}-\mathrm{cm}^{2}\right)$
	4:1	0.000895	(1.010)	16:1	0.000513	(0.579)
	5:1	0.000585	(0.660)	20:1, 25:1	0.000346	(0.391)
	10:1	0.000152	(0.172)	40:1, 50:1, 100:1	0.000092	(0.104)
Backlash at 1\% rated torque	10 Arc minutes Efficiency: Single reduction 91%			13 Arc minutes Double Reduction: 86\%		

[^20]
SLM Series Motors/SLG Series Gearmotors

SLM142

Motor Stator		118	138	158	168	238	258	268	358	368
Bus Voltage	Vrms	115	230	400	460	230	400	460	400	460
Speed @ Bus Voltage	RPM					2400				
RMS SINUSOIDAL COMMUTATION DATA										
Continuous Motor Torque	lbf-in	108.5	107.2	104.8	109.4	179.9	178.8	177.8	237.2	238.3
	Nm	12.25	(2.12	11.84	12.36	20.32	20.20	20.09	26.80	26.93
Peak Motor Torque	lbf-in	216.9	214.5	209.5	218.8	359.8	357.6	355.7	474.4	476.7
	Nm	24.51	24.23	23.67	24.72	40.65	40.40	40.19	53.60	53.85
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	lbf-in/A	5.9	11.8	20.2	23.6	11.8	20.2	23.6	20.2	24.0
	Nm/A	0.67	1.3	2.3	2.7	1.3	2.3	2.7	2.3	2.7
Continuous Current Rating	A	20.5	10.2	5.8	5.2	17.0	9.9	8.4	13.1	11.1
Peak Current Rating	A	41.1	20.3	11.6	10.4	34.1	19.8	16.8	26.2	22.2
O-PK SINUSOIDAL COMMUTATION DATA										
Continuous Motor Torque	Ibf-in	108.5	107.2	104.8	109.4	179.9	178.8	177.8	237.2	238.3
	Nm	12.25	12.12	11.84	12.36	20.32	20.20	20.09	26.80	26.93
Peak Motor Torque	Ibf-in	216.9	214.5	209.5	218.8	359.8	357.6	355.7	474.4	476.7
	Nm	24.51	24.23	23.67	24.72	40.65	40.40	40.19	53.60	53.85
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	lbf-in/A	4.2	8.3	14.3	16.7	8.3	14.3	16.7	14.3	17.0
	Nm/A	0.47	0.9	1.6	1.9	0.9	1.6	1.9	1.6	1.9
Continuous Current Rating	A	29.1	14.4	8.2	7.3	24.1	14.0	11.9	18.5	15.7
Peak Current Rating	A	58.1	28.7	16.4	14.7	48.2	27.9	23.8	37.1	31.4
MOTOR DATA										
Voltage Constant (Ke)	Vrms/Krpm	40.3	80.6	138.1	161.1	80.6	138.1	161.1	138.1	164.0
(+/-10\% @ 25 ${ }^{\circ} \mathrm{C}$)	Vpk/Krpm	57.0	113.9	195.3	227.9	113.9	195.3	227.9	195.3	232.0
Pole Configuration		8	8	8	8	8	8	8	8	8
Resistance (L-L)(+/-5\% @ $25^{\circ} \mathrm{C}$)	Ohms	0.21	0.87	2.68	3.34	0.339	1.01	1.39	0.61	0.858
Inductance (L-L)(+/-15\%)	mH	5.4	21.7	63.9	78.3	10.4	27.6	41.5	20.0	28.2
Armature Inertia (+/-5\%)	lb-in-sec ${ }^{2}$	0.00927				0.01537			0.02146	
	$\mathrm{Kg}-\mathrm{cm}^{2}$	10.47				17.363			24.249	
Brake Inertia	$1 \mathrm{l}-\mathrm{in}-\mathrm{sec}^{2}$	0.008408				0.008408			0.008408	
	$\mathrm{Kg}-\mathrm{cm}^{2}$	9.5				9.5			9.5	
Brake Current @ 24 VDC	A	1.0				1.0			1.0	
Brake Holding Torque	lbf-in (Nm)	354 (39.99)				354 (39.99)			354 (39.99)	
Brake Engage/Disengage Time	ms	25/73				25/73			25/73	
Mechanical Time Constant (tm)	ms	1.23	1.26	1.32	1.21	0.81	0.82	0.83	0.70	0.69
Electrical Time Constant (te)	ms	25.59	25.02	23.88	23.43	30.58	27.30	29.89	32.60	32.90
Friction Torque	lbf-in (Nm)	2.07 (0.234)				2.65 (0.299)			3.32 (0.375)	
Insulation Class		180 (H)								
Insulation System Volt Rating	Vrms	460								
Environmental Rating		IP65S								

For amplifiers using peak sinusoidal ratings, multiply RMS sinusoidal Kt by 0.707 and current by 1.414 .
Gearmotor not available on 142 frame motor
Test data derived using NEMA recommended aluminum heatsink 12 " $\times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient

SLM180

Motor Stator		138	158	168	238	$\begin{aligned} & 258 \\ & 400 \end{aligned}$	$\begin{aligned} & 268 \\ & \hline 460 \end{aligned}$	$\begin{aligned} & 358 \\ & 400 \end{aligned}$	$\begin{aligned} & 368 \\ & 460 \end{aligned}$
Bus Voltage	Vrms	230	400	460	230				
Speed @ Bus Voltage	RPM	2400							
RMS SINUSOIDAL COMMUTATION DATA									
Continuous Motor Torque	lbf-in	254.2	249.9	261.9	424.8	423.0	427.5	595.6	611.6
	Nm	28.72	28.23	29.59	47.99	47.79	48.30	67.29	69.10
Peak Motor Torque	NmfinNm	508.4	499.8	523.8	849.6	846.0	855.1	1,191.2	1223.2
		57.44	56.47	59.18	95.99	95.59	96.61	134.58	138.19
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	lbf-in/A	12.6	21.8	25.2	12.6	21.8	25.2	21.4	25.2
	Nm/A	1.4	2.5	2.8	1.4	2.5	2.8	2.4	2.8
Continuous Current Rating (IG)	A	22.6	12.8	11.6	37.7	21.7	19.0	31.1	27.2
Peak Current Rating	A	45.2	25.6	23.3	75.5	43.4	38.0	62.2	54.3
O-PK SINUSOIDAL COMMUTATION DATA									
Continuous Motor Torque	Ibf-in	254.2	249.9	261.9	424.8	423.0	427.5	595.6	611.6
	Nm	28.72	28.23	29.59	47.99	47.79	48.30	67.29	69.10
Peak Motor Torque	lbf-in	508.4	499.8	523.8	849.6	846.0	855.1	1,191.2	1,223.2
	Nm	57.44	56.47	59.18	95.99	95.59	96.61	134.58	138.19
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	lbf-in/A	8.9	15.4	17.8	8.9	15.4	17.8	15.1	17.8
	Nm/A	1.0	1.7	2.0	1.0	1.7	2.0	1.7	2.0
Continuous Current Rating	A	31.9	18.1	16.4	53.4	30.7	26.8	44.0	38.4
Peak Current Rating	A	63.9	36.2	32.9	106.7	61.3	53.7	88.0	76.8
MOTOR STATOR DATA									
Voltage Constant (Ke)	Vrms/Krpm	85.9	148.9	171.8	85.9	148.9	171.8	146.1	171.8
(+/-10\% @ 25 ${ }^{\circ} \mathrm{C}$)	Vpk/Krpm	121.5	210.6	243.0	121.5	210.6	243.0	206.6	243.0
Pole Configuration		8	8	8	8	8	8	8	8
Resistance ($\mathrm{L}-\mathrm{L}$)(+/-5\% @ $25^{\circ} \mathrm{C}$)	Ohms	0.325	1.010	1.224	0.134	0.407	0.530	0.233	0.306
Inductance (L-L)(+/-15\%)	mH	8.3	24.8	29.4	3.9	11.8	15.8	7.5	10.3
Armature Inertia (+\|-5\%)	$1 \mathrm{l}-\mathrm{in}-\sec ^{2}$	0.05051			0.08599			0.12147	
	$\mathrm{Kg}-\mathrm{cm}^{2}$	57.071			97.159			137.246	
Brake Inertia	lb-in-sec ${ }^{2}$	0.02815							
	$\mathrm{Kg}-\mathrm{cm}^{2}$	31.8							
Brake Current @ 24 VDC	A	1.45							
Brake Holding Torque	lbf-in (Nm)	708 (80)							
Brake Engage/Disengage Time	ms	53/97							
Mechanical Time Constant (tm)	ms	2.25	2.33	2.12	1.58	1.59	1.56	1.34	1.27
Electrical Time Constant (te)	ms	25.44	24.58	24.03	29.38	29.14	29.76	32.07	33.81
Friction Torque	Ibf-in (Nm)	5.07 (0.573)			7.80 (0.881)			11.52 (1.302)	
Insulation Class		180 (H)							
Insulation System Volt Rating	Vrms	460							
Thermal Switch, Case Temp	$\operatorname{deg} C$								
Environmental Rating		IP65S							

For amplifiers using peak sinusoidal ratings, multiply RMS sinusoidal Kt by 0.707 and current by 1.414.
Gearmotor not available on 180 frame.
Test data derived using NEMA recommended aluminum heatsink $16^{\prime \prime} \times 16^{\prime \prime} \times 1$ "at $25^{\circ} \mathrm{C}$ ambient

SLM Series Motors/SLG Series Gearmotors

SLG Series Gearmotor General Performance Specifications

Two torque ratings for the SLG Series Gearmotors are given in the table below. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size SLG Series Gearmotor. This is NOT the rated output torque of the motor multiplied by the ratio of the reducer.

It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system, including the amplifier, do not allow these values to be exceeded.

The right hand columns give the output torque at the indicated speed which will result in 10,000 hour (L10). The setup of the system, including the amplifier, will determine the actual output torque and speed.

SLM Radial Load

RPM	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{2 5 0}$	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{3 0 0 0}$
SLM060 lbf (N)	250	198	148	116	92	64
(1112)	(881)	(658)	(516)	(409)	(285)	
SLM075 lbf (N)	278	(1237)	220	162	129	102
(979)	(721)	(574)	(454)	(316)		
SLM090	427	340	250	198	158	109
lbf (N)	(1899)	(1512)	(1112)	(881)	(703)	(485)
SLM115	579	460	339	269	214	148
lbf (N)	(2576)	(2046)	(1508)	(1197)	(952)	(658)
SLM142 lbf (N)	1367	1085	800	635	504	349
(6081)	(4826)	(3559)	(2825)	(2242)	(1552)	
SLM180	2237	1776	1308	1038	824	605
lbf (N)	(9951)	(7900)	(5818)	(4617)	(3665)	(2691)

SLG Radial Load

RPM	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{2 5 0}$	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{3 0 0 0}$
SLG060	189	150	110	88	70	48
lbf (N)	(841)	(667)	(489)	(391)	(311)	(214)
SLG075	343	272	200	159	126	88
lbf (N)	(1526)	(1210)	(890)	(707)	(560)	(391)
SLG090	350	278	205	163	129	89
lbf (N)	(1557)	(1237)	(912)	(725)	(574)	(396)
SLG115 lbf (N)	858	681	502	398	316	218
(3817)	(3029)	(2233)	(1770)	(1406)	(970)	

Side load ratings shown above are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Output Torque Ratings-Mechanical

$\begin{aligned} & \overline{\mathbf{D}} \\ & \mathrm{D} \end{aligned}$	Ratio	Maximum Allowable Output Torque Set by User-lbf-in (Nm)	Output Torque @ Speed for 10,000 Hour Life - Ibf-in (Nm)		
			1000 RPM	3000 RPM	5000 RPM
	4:1	603 (68.1)	144 (16.2)	104 (11.7)	88 (9.9)
	5:1	522 (58.9)	170 (19.2)	125 (14.1)	105 (11.9)
	10:1	327 (36.9)	200 (22.6)	140 (15.8)	120 (13.6)
	16:1	603 (68.1)	224 (25.3)	160 (18.1)	136 (15.4)
	20:1	603 (68.1)	240 (27.1)	170 (19.2)	146 (16.5)
	25:1	522 (58.9)	275 (31.1)	200 (22.6)	180 (20.3)
	40:1	603 (68.1)	288 (32.5)	208 (23.5)	180 (20.3)
	50:1	522 (58.9)	340 (38.4)	245 (27.7)	210 (23.7)
	100:1	327 (36.9)	320 (36.1)	280 (31.6)	240 (27.1)
$\begin{aligned} & \text { N } \\ & \stackrel{0}{0} \\ & 1 \\ & \hline \end{aligned}$			1000 RPM	2500 RPM	4000 RPM
	4:1	1618 (182.3)	384 (43.4)	292 (32.9)	254 (23.7)
	5:1	1446 (163.4)	395 (44.6)	300 (33.9)	260 (29.4)
	10:1	700 (79.1)	449 (50.7)	341 (38.5)	296 (33.4)
			1000 RPM	2500 RPM	4000 RPM
$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & \text { ↔ } \end{aligned}$	4:1	2078 (234.8)	698 (78.9)	530 (59.9)	460 (51.9)
	5:1	1798 (203.1)	896 (101.2)	680 (76.8)	591 (66.8)
	10:1	1126 (127.2)	1043 (117.8)	792 (89.5)	688 (77.7)
	16:1	2078 (234.8)	1057 (119.4)	803 (90.7)	698 (78.9)
	20:1	2078 (234.8)	1131 (127.8)	859 (97.1)	746 (84.3)
	25:1	1798 (203.1)	1452 (164.1)	1103 (124.6)	958 (108.2)
	40:1	2078 (234.8)	1392 (157.3)	1057 (119.4)	918 (103.7)
	50:1	1798 (203.1)	1787 (201.9)	1358 (153.4)	1179 (133.2)
	100:1	1126 (127.2)	1100 (124.3)	1100 (124.3)	1100 (124.3)
$\stackrel{\sim}{c}$			1000 RPM	2000 RPM	3000 RPM
	4:1	4696(530.4)	1392 (157.3)	1132 (127.9)	1000 (112.9)
	5:1	4066 (459.4)	1445 (163.3)	1175 (132.8)	1040 (117.5)
	10:1	2545 (287.5)	1660 (187.6)	1350 (152.6)	1200 (135.6)
	16:1	4696 (530.4)	2112 (238.6)	1714 (193.0)	1518 (171.0)
	20:1	4696 (530.4)	2240 (253.1)	1840 (207.9)	1620 (183.0)
	25:1	4066 (459.4)	2350 (265.5)	1900 (214.7)	1675 (189.2)
	40:1	4696 (530.4)	2800 (316.4)	2240 (253.1)	2000 (225.9)
	50:1	4066 (459.4)	2900 (327.7)	2350 (265.5)	2100 (237.3)
	100:1	2545 (287.5)	2500 (282.5)	2500 (282.5)	2400 (271.2)

$\square 1$ Stage $\square 2$ Stage

Motor and Gearmotor Weight

		LM/G06		SLM	075		SLM/G090			SLM/G115		SLM142	SLM180
	Motor	1 Stage	2 Stage	Motor	1 Stage	Motor	1 Stage	2 Stage	Motor	1 Stage	2 Stage	(gear stages on SLM142	not available nd SLM180)
1 Stack lbs (kg)	3.0 (1.4)	7.5 (3.4)	9.3 (2.4)	4.2 (1.9)	6.6 (3.0)	5.4 (2.4)	12.8 (5.8)	14.8 (6.7)	14.2 (6.4)	28 (12.7)	34 (15.4)	31 (14.0)	60 (27.2)
2 Stack lbs (kg)	4.1 (1.9)	8.6 (3.9)	10.4 (4.7)	6.0 (2.7)	8.4 (3.8)	7.8 (3.5)	15.2 (6.9)	17.2 (7.8)	22.0 (9.9)	35.8 (16.2)	41.8 (18.9)	39 (17.7)	82 (37.2)
3 Stack lbs (kg)	5.2 (2.4)	9.7 (4.4)	11.5 (5.2)	7.8 (3.5)	10.2 (4.6)	10.2 (4.6)	17.6 (7.9)	19.6 (8.9)	29.8 (13.5)	43.6 (19.8)	49.6 (22.5)	47 (21.3)	104 (47.2)
Brake	1.8 (0.8)			0.8 (0.4)		2.7 (1.2)			4.1 (1.9)			6.0 (2.7)	12 (5.4)

SLM Series Motors/SLG Series Gearmotors

Speed and Torque Curves

These speed vs. torque curves represent approximate continuous torque ratings at the indicated rpms. Different types of servo amplifiers offer varying motor torque.

Test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 3 / 8^{\prime \prime}$ on SLM/SLG075 and $10^{\prime \prime} \times 10^{\prime \prime} \times 3 / 8^{\prime \prime}$ on SLM/SLG090 at $25^{\circ} \mathrm{C}$ ambient.
For gearmotors, divide speed by gear ratio; multiply torque by gear ratio and effciency. Efficencies: 1 Stage $=0.91,2$ Stage $=0.86$

SLM Series Motors/SLG Series Gearmotors

SLM/SLG-115 (2 STACK)

SLM/SLG-115 (3 STACK)

SLM142 (1 STACK)

SLM142 (2 STACK)

SLM142 (3 STACK)

Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ on SLM/SLG115 and $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ on SLM142 at $25^{\circ} \mathrm{C}$ ambient.
For gearmotors, divide speed by gear ratio; multiply torque by gear ratio and effciency. Efficencies: 1 Stage $=0.91,2$ Stage $=0.86$

SLM Series Motors/SLG Series Gearmotors

SLM180 (3 STACK)

Test data derived using NEMA recommended aluminum heatsink 16 " x $16^{\prime \prime} \times 1$ " on SLM180 at $25^{\circ} \mathrm{C}$ ambient

Options

Motor Speed

All Exlar T-LAM motors and actuators carry a standard motor speed designator (see chart). This is representative of the standard base speed of the motor for the selected bus voltage.

If the model number is created and the location for the motor speed designator is left blank, this is the base speed to which the motor will be manufactured. The model number can also be created including this standard speed designator.

Designator	Base Speed	Motor Series
-50	5000 rpm	SLM/SLG060
-40	4000 rpm	SLM/SLG075
-40	4000 rpm	SLM/SLG090
-30	3000 rpm	SLM/SLG115
-24	2400 rpm	SLM142, SLM180

Motor Stators

SLM/SLG motor options are described with a 3 digit code. The first digit calls out the stack length, the second digit signifies the rated bus voltage, and the third digit identifies the number of poles of the motor. Refer to the mechanical/electrical specifications for motor torque and actuator rated force.

8 Pole, Class 180 H

1 Stack		2 Stack		3 Stack	
118	115 Vrms	218	115 Vrms	318	115 Vrms
138	$230 ~ V r m s$	238	$230 ~ V r m s$	338	$230 ~ V r m s$
158	400 Vrms	258	400 Vrms	358	400 Vrms
168	$460 ~ V r m s$	268	$460 ~ V r m s$	368	460 Vrms

SLM Series Motors/SLG Series Gearmotors

Options

SLM Series Motors/SLG Series Gearmotors

Terminal Box Wiring Diagram

Note 1: Thermal switch normally closed;
opens when stator temp exceeds 130 deg . C

Low Volt Terminal Block- Rockwell 1492-L3		Low Volt Terminal Block- Rockwell 1492-L6		
Voltage Rating	600 VAC/DC	Voltage Rating	600 VAC/DC	
Current Rating	27 Amps	Current Rating	50 Amps	
Wire Gauge Range	$26-12$ AWG	Wire Gauge Range	$20-8$ AWG	

Terminal Box Dimensions

SLM Series Motors/SLG Series Gearmotors

Dimensions

SLM075 Class 1 Division 2 Option

SLM075 Dim. in (mm)	1 Stack Stator	2 Stack Stator	3 Stack Stator	1 Stack Stator with Brake	2 Stack Stator with Brake	3 Stack Stator with Brake
A	NA	5.90	6.90	6.18	7.18	8.18

Face plate edge is not intended for alignment of shaft (use pilot)
*Electronics box extends past motor mount face.

SLM090 Class 1 Division 2 Option

SLM090 Dim. in (mm)	1 Stack Stator	2 Stack Stator	3 Stack Stator	1 Stack Stator with Brake	2 Stack Stator with Brake	3 Stack Stator with Brake
A	NA	5.65	6.65	5.96	6.96	7.96

Face plate edge is not intended for alignment of shaft (use pilot) Applications with >20A rms will require the larger terminal box.

SLM Series Motors/SLG Series Gearmotors

SLM115 Class 1 Division 2 Option

SLM115 Dim in (mm)	1 Stack Stator	2 Stack Stator	3 Stack Stator	1 Stack Stator with Brake	2 Stack Stator with Brake	3 Stack Stator with Brake
A	6.02	8.02	10.02	7.75	9.75	11.75
	(153)	(203.7)	(254.5)	(196.9)	(247.7)	(298.5)

Face plate edge is not intended for alignment of shaft (use pilot)
Applications with >20A rms will require the larger terminal box.

SLM142 Class I Division 2 Option

Face plate edge is not intended for alignment of shaft (use pilot)

SLM Series Motors/SLG Series Gearmotors

SLM180 Class 1 Division 2 Option

SLM180	1 Stack Stator	2 Stack Stator	3 Stack Stator	1 Stack Stator with Brake	2 Stack Stator with Brake	3 Stack Stator with Brake
DimA	9.74	12.24	14.74	11.64	14.14	16.64
in (mm)	(247)	(311)	(374)	(296)	(359)	(423)

Face plate edge is not intended for alignment of shaft (use pilot)

SLG075 Class 1 Division 2 Option

SLG075	1 Stack Stator	2 Stack Stator	3 Stack Stator	1 Stack Stator with Brake	2 Stack Stator with Brake	3 Stack Stator with Brake
$\operatorname{Dim} A$	6.53	7.53	8.53	7.81	8.81	9.81 in (mm)
(166)	(192)	(217)	(198)	(224)	(249)	

Face plate edge is not intended for alignment of shaft (use pilot)

SLG090 Class 1 Division 2 Option

SLC090 Dim. in (mm)	1 Stack Stator	2 Stack Stator	3 Stack Stator	1 Stack Stator with Brake	2 Stack Stator with Brake	3 Stack Stator with Brake
A	7.76	8.76	9.96	9.07	10.07	11.07
1 Stage						
Gearhead	(197)	(223)	(248)	(230)	(256)	(281)
A	9.03	10.03	11.03	10.34	11.34	12.34
2 Stage	(229)	(255)	(280)	(263)	(288)	(313)

[^21]
SLM Series Motors/SLG Series Gearmotors

SLG115 Class I Division 2 Option

Face plate edge is not intended for alignment of shaft (use pilot)
Applications with $>20 \mathrm{~A}$ rms will require the larger terminal box.

Sample Product Number: SLG090-005-RTEB-PC7-2C8-30-SDXL
(Class 1, Division 2)

SLM/G = Model Series SLG = SLG Series Servo Gearmotor SLM = SLM Series Servo Motor (no gear reduction)

AAA = Motor Frame Size
$075=75 \mathrm{~mm}$
$090=90 \mathrm{~mm}$
$115=115 \mathrm{~mm}$
$142=142 \mathrm{~mm}$ (SLM only)
$180=180 \mathrm{~mm}$ (SLM only)
BBB = Gear Reduction Ratio
(leave blank for SLM Motor)
Single reduction ratio
$004=4: 1$ Single Reduction
$005=5: 1$ Single Reduction $010=10: 1$ Single Reduction
Double reduction ratio (N/A on 075 mm)
$016=16: 1$ Double Reduction
$020=20: 1$ Double Reduction
$025=25: 1$ Double Reduction
$040=40: 1$ Double Reduction
$050=50: 1$ Double Reduction
$100=100: 1$ Double Reduction

C = Shaft Type
K = Keyed
$\mathrm{R}=$ Smooth/round
D = Connections
T = Terminal box with NPT ports
$E=$ Coating Options ${ }^{1}$
G = Exlar standard
F = Brake Options
B = Brake
$S=$ Standard no brake
GGG = Feedback Type
See page 89 for more information
H = Motor Stacks
$1=1$ stack magnets
$2=2$ stack magnets ${ }^{2}$
$3=3$ stack magnets 2
I = Voltage Rating
A $=24$ Volt DC
B $=48$ Volt DC
C $=120$ Volt DC
$1=115$ Volt RMS
$3=230$ Volt RMS
$5=400$ Volt RMS
$6=460$ Volt RMS
J $=$ Motor Poles
$8=8$ motor poles
KK $=$ Motor Speed
$24=2400$ rpm, SLM142, SLM180
$30=3000$ rpm, SLM/G115
$40=4000$ rpm, SLM/G090
$50=5000$ rpm, SLM/G060
MM $=$ Mechanical Options
$\mathrm{NI}=$ Non-incendive construction required for

I = Voltage Rating
A $=24$ Volt DC
B $=48$ Volt DC

- 115 VII RMS

115 Volt RMS
$5=400$ Volt RMS
$6=460$ Volt RMS
$\mathrm{J}=$ Motor Poles
$8=8$ motor poles
$24=2400 \mathrm{rpm}$, SLM142, SLM180
$30=3000 \mathrm{rpm}$, SLM/G115
$40=4000$ rpm, SLM/G090

MM= Mechanical Options
$\mathrm{NI}=$ Non-incendive construction required for Class 1, Division 2

NOTES:

1. These housing may indicate the need for special material main rods or mounting.
2. 115 Vrms is not available on a 2 or 3 stack SLM/G, or a 3 stack SLM/G090.

For options or specials not listed above or for
extended temperature operation, please contact Exlar

Feedback Types for GSX, SLG, SLM, EL, and ER

(Also specify the Amplifier/Drive Model being used when ordering)

- Standard Incremental Encoder - 2048 line (8192 cts) per rev. index pulse, Hall commutation, 5VDC
- Standard Resolver - Size 15, 1024 line (2048 cts) per rev. two pole resolver
- Motor files for use with select Emerson/CT, Rockwell /AB and Danaher/Kollmorgen Drives are available at www.exlar.com

Allen-Bradley/Rockwell: (Note: AB8, AB9 and ABB callouts are available only on spare/replacement actuators that have been previously ordered. For all new configurations using a Rockwell drive, please select from the options below. Consult Exlar for integration questions) ${ }^{3}$

Note: RA1, RA2, RA3, and RA4 callouts not available for SLM motors.
RA1 = Hiperface Stegmann SKM36 multi-turn absolute encoder. MPL Type V feedback (128 sin/cos) and Type 7 SpeedTec connectors and wiring when using the " M " connector option. 20 and 30 frame sizes only. (Formerly ABB) ${ }^{1}$
RA2 $=$ Hiperface Stegmann SRM50 multi-turn absolute encoder. MPL Type M feedback (1024 sin/cos) and Type 7 SpeedTec connectors and wiring when using the " M " connector option. 40,50 and 60 frame sizes only. (Formerly AB9) ${ }^{1}$
RA3 = Standard incremental encoder. MPL Type M feedback (2048 line) and Type 7 SpeedTec connector and wiring when using the "M" connector option. (Formerly AB8)
RA4 $=$ Standard Resolver. MPL Type R feedback (4 pole) and Type 7 SpeedTec connectors and wiring when using the " M " connector option. (Formerly AB6)

Advanced Motion Control:

AM1 = Standard Incremental Encoder
AM2 $=$ Encoder 1000 line, w/commutation, 5 VDC
AM3 = Standard Resolver
AM5 $=$ Encoder 5000 line, w/commutation, 5 VDC

Baldor:

BD2 = Std Resolver - BSM motor wiring w/M23 connectors for 'M' option
BD3 $=$ Std Incremental Encoder - BSM motor wiring w/M23 connectors for 'M' option

Beckhoff:

BE2 = EnDat Heidenhain EQN1125 multi-turn absolute encoder - AM5XX motor wiring w/M23 euro connectors for 'M' option

B\&R Automation:

BR1 = Standard Resolver
BR2 $=$ EnDat Heidenhain EQN1125/1325 multi-turn absolute encoder - 8LS/8LM motor wiring w/M23 euro connectors for 'M' option

Copley Controls:
CO1 = Standard Incremental Encoder
CO2 $=$ Standard Resolver
Control Techniques/Emerson:
CT1 = Hiperface Stegmann SRM050 multi-turn absolute encoder - 40-50-60 Frame Size. FM/UM/EZ motor wiring w/M23 euro connectors for 'M' option
CT3 $=$ Hiperface Stegmann SKM036 multi-turn absolute encoder - 20-30 Frame Size. FM/UM/EZ motor wiring w/M23 euro connectors for 'M' option
CT4 $=$ Standard Incremental Encoder FM/UM/EZ motor wiring w/M23 euro connectors for 'M' option
CT5 = Std Resolver - FM/UM/EZ motor wiring w/M23 euro connectors for 'M' option
CT7 $=$ Encoder 5000 line, with commutation, 5 VDC - FM/UM/EZ motor wiring w/M23 euro connectors for 'M' option
CT9 = Unidrive SP with EnDat Heidenhain EQN1125 multi-turn absolute encoder w/M23 connectors

Elmo Motion Control:

EL1 = Standard Resolver
EL2 $=$ Standard Incremental Encoder
EL3 $=$ EnDat Heidenhain EQN1125 multi-turn absolute encoder
Emerson/Control Techniques:
EM2 = Std Incremental Encoder - NT motor wiring w/MS connectors for 'M' option
EM5 $=$ Encoder 5000 line, with commutation, 5 VDC - NT motor wiring w/MS connectors for 'M' option

Elau:
EU1 = Hiperface Stegmann SRM050 multi-turn absolute encoder - 40-50-60 Frame Size. SH motor wiring w/MS connectors for ' M ' option
EU4 $=$ Hiperface Stegmann SKM036 multi-turn absolute encoder -20-30 Frame Size. SH motor wiring w/MS connectors for 'M' option.

Exar:

EX4 = Standard Resolver
EX5 $=$ Standard Resolver with KTY84 thermistor
EX6 = EnDat Heidenhain EQN1125 multi-turn absolute encoder
EX7 $=$ Incremental encoder, 5000 line with commutation, 5 Vdc
EX8 $=$ Hiperface Stegmann SRM50 multi-turn absolute encoder

Indramat/Bosch-Rexroth:

IN6 = Std Resolver - MKD/MHD motor wiring w/M23 euro connectors for 'M' option
IN7 = Hiperface Stegmann SKM036 multi-turn absolute encoder - MSK motor wiring w/M23 euro connectors for 'M' option - plug \& play option
IN8 = Indradrive EnDat Heidenhain EQN1125 multi-turn absolute w/M23 connectors

Kollmorgen/Danaher:

KM4 $=$ EnDat Heidenhain EQN1325 multi-turn absolute encoder (Sine Encoder)- AKM motor wiring w/M23 Intercontec euro connectors for 'M' option
KM5 = Standard Resolver - AKM motor wiring w/M23 Intercontec euro connectors for 'M' option
KM6 = Standard Incremental Encoder - AKM motor wiring w/ M23 Intercontec euro connectors for 'M' option

Lenze/AC Tech:
LZ1 = Hiperface Stegmann SRM050 multi-turn absolute encoder MCS motor wiring w/M23 euro connectors for ' M ' option
LZ5 = Standard Resolver - MCS motor wiring w/ M23 euro connectors for 'M' option
LZ6 = Standard Incremental Encoder - MCS motor wiring w/ M23 euro connectors for 'M' option

Parker Compumotor:

PC6 = Std Incremental Encoder - SMH motor wiring w/M23 connectors for 'M' option - European only
PC7 = Std Resolver - SMH motor wiring w/M23 connectors for 'M' option - European only

PC8 = Standard Incremental Encoder - MPP series motor wiring w/PS connectors for 'M' option - US Only
PC9 = Hiperface Stegmann SRM050 multi-turn absolute encoder MPP motor wiring w/PS connectors for 'M' option - US Only
PC0 = Standard Resolver - MPP motor wiring w/PS connectors for ' M ' option - US Only

Schneider Electric:
SC2 = Hiperface Steamann SKM036 multi-turn absolute encoder - BSH motor wiring w/M23 euro connectors for 'M' option

Stober Drives:
SB3 = EnDat Heidenhain EQN1125 multi-turn absolute encoder ED/EK motor wiring w/M23 euro connectors for 'M' option
SB4 = Standard Resolver ED/EK motor wiring W/23 connector for "M" option

Siemens:

SM2 = Standard Resolver - 1FK7 motor wiring w/M23 connectors for 'M' option
SM3 $=$ EnDat Heidenhain EQN1325 multi-turn absolute encoder - 40-50-60 Frame Size. 1FK7 motor wiring w/M23 euro connectors for 'M' option
SM4 = EnDat Heidenhain EQN1125 multi-turn absolute encoder -20-30 Frame Size. 1FK7 motor wiring w/M23 euro connectors for 'M' option
SM9 = Siemens Heidenhain EQN1325 4096 (12 bits) multi-turn absolute w/M23 connectors

SEW/Eurodrive:

SW1 = Standard Resolver - CM motor wiring w/ M23 euro connectors for 'M' option
SW2 = Standard Incremental Encoder
SW3 $=$ Hiperface Stegmann SRM050 multi-turn absolute encoder CM motor wiring w/ M23 euro connectors for ' M ' option

Yaskawa:

YS5 = Yaskawa Sigma V absolute encoder

NOTES:

1. Not compatible with Kinetix 300 Drives.
2. N/A with holding brake unless application details are discussed with your local sales representative.
3. All rotary motors to be used with Kinetix or Sercos based systems will require prior approval from Rockwell Automation.

Engineering Reference

Sizing and Selection of Exlar Linear and Rotary Actuators

Move Profiles

The first step in analyzing a motion control application and selecting an actuator is to determine the required move profile. This move profile is based on the distance to be traveled and the amount of time available in which to make that move. The calculations below can help you determine your move profile.

Each motion device will have a maximum speed that it can achieve for each specific load capacity. This maximum speed will determine which type of motion profile can be used to complete the move. Two common types of move profiles are trapezoidal and triangular. If the average velocity of the profile, is less than half the maximum velocity of the actuator, then triangular profiles can be used. Triangular Profiles result in the lowest possible acceleration and deceleration. Otherwise a trapezoidal profile can be used. The trapezoidal profile below with 3 equal divisions will result in 25% lower maximum speed and 12.5% higher acceleration and deceleration. This is commonly called a $1 / 3$ trapezoidal profile.

The following pages give the required formulas that allow you to select the proper Exlar linear or rotary actuator for your application. The first calculation explanation is for determining the required thrust in a linear application.

The second provides the necessary equations for determining the torque required from a linear or rotary application. For rotary applications this includes the use of reductions through belts or gears, and for linear applications, through screws.

Pages are included to allow you to enter your data and easily perform the required calculations. You can also describe your application graphically and fax it to Exlar for sizing. Reference tables for common unit conversions and motion system constants are included at the end of the section.

Linear Move Profile Calculations

Vmax = max.velocity-in/sec (m/sec)
Vavg = avg. velocity-in/sec (m/sec)
tacc = acceleration time (sec)
tdec $=$ deceleration time (sec)
tcv = constant velocity (sec)
ttotal = total move time (sec)
acc $=$ accel-in $/ \sec ^{2}\left(\mathrm{~m} / \mathrm{sec}^{2}\right)$
dec $=$ decel $-\mathrm{in} / \mathrm{sec}^{2}\left(\mathrm{~m} / \mathrm{sec}^{2}\right)$
$\mathrm{cv}=$ constant vel.-in/sec (m/sec)
$\mathbf{D}=$ total move distance-in (m)
or revolutions (rotary)

Standard Equations

Vavg = D / ttotal
If tacc = tdec Then: Vmax =
(ttotal/(ttotal-tacc)(Vavg)
and
D = Area under profile curve
$\mathbf{D}=(1 / 2(\mathbf{t a c c}+\mathbf{t d e c})+\mathbf{t c v})(\mathbf{V} \max)$

Sizing and Selection of Exlar Linear Actuators

Terms and (units)

THRUST = Total linear force-lbf (N)
\varnothing = Angle of inclination (deg)
Ffriction = Force from friction-lbf (N)
tacc = Acceleration time (sec)
Facc = Acceleration force-lbf (N)
$\mathbf{v}=$ Change in velocity-in/sec (m / s)
Fgravity = Force due to gravity-lbf (N)
$\mu=$ Coefficient of sliding friction
Fapplied = Applied forces-lbf (N)
(refer to table on page 136 for different materials)
WL = Weight of Load-lbf (N)
$\mathrm{g}=386.4$: Acceleration of gravity $-\mathrm{in} / \mathrm{sec}^{2}\left(9.8 \mathrm{~m} / \mathrm{sec}^{2}\right)$

Thrust Calculation Equations

THRUST = Ffriction + [Facceleration $]+$ Fgravity + Fapplied
THRUST $=\mathbf{W} L \mu \cos \varnothing+[(\mathbf{W L} / 386.4)(\mathbf{v} / \mathrm{tacc})]+\mathbf{W} L \sin \varnothing+$ Fapplied
Sample Calculations: Calculate the thrust required to accelerate a 200 pound mass to 8 inches per second in an acceleration time of 0.2 seconds. Calculate this thrust at inclination angles(\varnothing) of $0^{\circ}, 90^{\circ}$ and 30°. Assume that there is a 25 pound spring force that is applied against the acceleration.
$\mathrm{WL}=200 \mathrm{lbm}, \mathrm{v}=8.0 \mathrm{in} / \mathrm{sec} ., \mathbf{t a}=0.2 \mathrm{sec} .$, Fapp. $=25 \mathrm{lbf}, \mu=0.15$ $\varnothing=0^{\circ}$

```
THRUST \(=\mathbf{W L} \mu \cos \varnothing+[(\mathbf{W L} / 386.4)(\mathbf{v} /\) tacc \()]+\mathbf{W L s i n} \varnothing+\) Fapplied
    \(=(200)(0.15)(1)+[(200 / 386.4)(8.0 / 0.2)]+(200)(0)+25\)
    \(=30 \mathrm{lbs}+20.73 \mathrm{lbs}+0 \mathrm{lbs}+25 \mathrm{lbs}=75.73 \mathrm{lbs}\) force
\(\emptyset=90^{\circ}\)
THRUST \(=\mathbf{W} L \mu \cos \varnothing+[(\mathbf{W L} / 386.4)(\mathbf{v} /\) tacc \()]+\mathbf{W L s i n} \varnothing+\) Fapplied
    \(=(200)(0.15)(0)+[(200 / 386.4)(8.0 / 0.2)]+(200)(1)+25\)
    \(=0 \mathrm{lbs}+20.73 \mathrm{lbs}+200 \mathrm{lbs}+25 \mathrm{lbs}=\mathbf{2 4 5 . 7 3} \mathrm{lbs}\) force
\(\varnothing=30^{\circ}\)
THRUST \(=\mathbf{W} L \mu \cos \varnothing+[(\mathbf{W L} / 386.4)(\mathbf{v} /\) tacc \()]+\mathbf{W L s i n} \varnothing+\) Fapplied
    \(=(200)(0.15)(0.866)+[(200 / 386.4)(8.0 / 0.2)]+(200)(0.5)+25\)
    \(=26 \mathrm{lbs}+20.73 \mathrm{lbs}+100+25=171.73 \mathrm{lbs}\) force
```


Thrust Calculations

Definition of thrust:

The thrust necessary to perform a specific move profile is equal to the sum of four components of force. These are the force due to acceleration of the mass, gravity, friction and applied forces such as cutting and pressing forces and overcoming spring forces.

Angle of Inclination

$$
\left.\right|^{90^{\circ}} \quad \text { Note: at } \varnothing=0^{\circ}, ~ \begin{array}{ll}
\cos \varnothing=1 ; \sin \varnothing=0 \\
0^{\circ} & \text { at } \varnothing=90^{\circ} \\
-90^{\circ} & \cos \varnothing=0 ; \sin \varnothing=1
\end{array}
$$

It is necessary to calculate the required thrust for an application during each portion of the move profile, and determine the worst case criteria. The linear actuator should then be selected based on those values. The calculations at the right show calculations during acceleration which is often the most demanding segment of a profile.

Motor Torque Calculations

When selecting an actuator system it is necessary to determine the required motor torque to perform the given application. These calculations can then be compared to the torque ratings of the given amplifier and motor combination that will be used to control the actuator's velocity and position.

When the system uses a separate motor and screw, like the FT actuator, the ratings for that motor and amplifier are consulted. In the case of the GSX Series actuators with their integral brushless motors, the required torque divided by the torque constant of the motor (Kt) must be less than the current rating of the GSX or SLM motor.

Inertia values and torque ratings can be found in the GSX, FT, and SLM/SLG Series product specifications.

For the GSX Series the screw and motor inertia are combined.

Motor with screw (GSX, FT, \& EL)

Motor \& motor with reducer (SLM/SLG \& ER)

Motor with belt and pulley

Terms and (units)

```
\lambda = Required motor torque, Ibf-in (N-m)
\lambdaa = Required motor acceleration torque, Ibf-in (N-m)
F = Applied force load, non inertial, lbf (kN)
\ell = Screw lead, in (mm)
R = Belt or reducer ratio
TL = Torque at driven load lbf-in (N-m)
vL = Linear velocity of load in/sec (m/sec)
\omegaL = Angular velocity of load rad/sec
\omegam = Angular velocity of motor rad/sec
\eta = Screw or ratio efficiency
g = Gravitational constant, 386.4 in/s}\mp@subsup{\textrm{s}}{}{2}(9.75\textrm{m}/\mp@subsup{\textrm{s}}{}{2}
a = Angular acceleration of motor, rad/s}\mp@subsup{}{}{2
m = Mass of the applied load, lb (N)
JL = Reflected Inertia due to load, lbf-in-\mp@subsup{s}{}{2}}\mathrm{ (N-m-s}\mp@subsup{}{}{2}
Jr = Reflected Inertia due to ratio, Ibf-in-\mp@subsup{s}{}{2}}\mathrm{ (N-m-s}\mp@subsup{}{}{2}
Js = Reflected Inertia due to external screw, lbf-in-\mp@subsup{s}{}{2}}\mathrm{ (N-m-s}\mp@subsup{}{}{2}
Jm = Motor armature inertia, lbf-in-s2 (N-m-s2)
L = Length of screw, in (m)
\rho= Density of screw material, lb/in }\mp@subsup{}{}{3}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3}
r = Radius of screw, in (m)
\pi}= pi (3.14159
C
```


Velocity Equations

Screw drive: $\mathbf{V}_{\mathrm{L}}=\omega \mathrm{m}^{*} \mathrm{~S} / 2 \pi \mathrm{in} / \mathrm{sec}(\mathrm{m} / \mathrm{sec})$
Belt or gear drive: $\omega m=\omega_{\mathrm{L}}{ }^{*} \mathrm{R} \mathrm{rad} / \mathrm{sec}$

Torque Equations

Torque Under Load

Screw drive (GS, FT or separate screw): $\lambda=\frac{S \cdot F}{2 \cdot \pi \cdot \eta} \operatorname{lbf-in}(N-m)$
Belt and Pulley drive: $\lambda=T_{L} / R \eta$ Ibf-in (N-m)
Gear or gear reducer drive: $\lambda=T_{L} / R \eta \operatorname{lbf}-$ in (N-m)
Torque Under Acceleration
$\lambda a=\left(\mathbf{J}_{\mathrm{m}}+\mathbf{J}_{\mathrm{R}}+\left(\mathbf{J}_{\mathrm{S}}+\mathbf{J}_{\mathrm{L}}\right) / \mathrm{R}^{2}\right)$ a lbf-in
$\alpha=$ angular acceleration $=(($ RPM $/ 60) \times 2 \pi) / \mathbf{t}_{\text {acc }}, \mathrm{rad} / \mathrm{sec}^{2}$.
$J_{S}=\frac{\pi \cdot L \cdot \rho x r^{4}}{2 \cdot g} \mathrm{lb}-\mathrm{in}-\mathrm{s}^{2}\left(\mathrm{~N}-\mathbf{m}-\mathrm{s}^{2}\right)$

Total Torque per move segment

$\lambda T=\lambda a+\lambda \operatorname{lbf-in}(N-m)$

Calculating Estimated Travel Life of Exlar Linear Actuators

Mean Load Calculations

For accurate lifetime calculations of a roller screw in a linear application, the cubic mean load should be used. Following is a graph showing the values for force and distance as well as the calculation for cubic mean load. Forces are shown for example purposes. Negative forces are shown as positive for calculation.

Cubic Mean Load Equation

Value from example numbers is 217 lbs.

Lifetime Calculations

The expected \mathbf{L}_{10} life of a roller screw is expressed as the linear travel distance that 90% of the screws are expected to meet or exceed before experiencing metal fatigue. The mathematical formula that defines this value is below. The life is in millions of inches (mm). This standard \mathbf{L}_{10} life calculation is what is expected of 90% of roller screws manufactured and is not a guarantee. Travel life estimate is based on a properly maintained screw that is free of contaminants and properly lubricated. Higher than 90% requires de-rating according to the following factors:

$95 \% \times 0.62$	$96 \% \times 0.53$
$97 \% \times 0.44$	$98 \% \times 0.33$
$99 \% \times 0.21$	

Single (non-preloaded) nut:

$$
L_{10}=\binom{C_{a}}{F_{c m l}}^{3} \times \ell
$$

Short Stroke Lifetime Calculations

If your application requires high force over a stroke length shorter than the length of the rollers/nut, please contact Exlar for derated life calculations. You may also download the article "Calculating Life Expectency" at www.exlar.com.

Note: The dynamic load rating of zero backlash, preloaded screws is 63% of the dynamic load rating of the standard non-preloaded screws. The calculated travel life of a preloaded screw will be 25% of the calculated travel life of the same size and lead of a non-preloaded screw for the same application.

Total Thrust Calculations

Terms and (units)

THRUST = Total linear force-lbf (N)
$F_{\text {friction }}=$ Force from friction-lbf (N)
$F_{\mathrm{acc}} \quad=$ Acceleration force-lbf (N)
$\boldsymbol{F}_{\text {gravity }}=$ Force due to gravity-lbf (N)
$\boldsymbol{F}_{\text {applied }}=$ Applied forces-lbf (N)
$386.4=$ Acceleration of gravity - in $/ \mathrm{sec}^{2}\left(9.8 \mathrm{~m} / \mathrm{sec}^{2}\right)$

Variables

\varnothing	= Angle of inclination - deg.................... $=$
tacc	= Acceleration time - sec....................... $=$
v	$=$ Change in velocity - in/sec (m/s).......... $=$
μ	= Coefficient of sliding friction $=$
$\mathbf{W}_{\text {L }}$	= Weight of Load-lbm (kg)..................... $=$
$F_{\text {appli }}$	= Applied forces-lbf (N) $=$

Thrust Calculation Equations

THRUST $=\left[\begin{array}{lll}\text { friction }\end{array}\right]+\left[F_{\text {acceleration }}\right]+F_{\text {gravity }}+F_{\text {applied }}$
THRUST $=\left[\mathbf{W}_{\mathrm{L}} \times \mu \times \cos \varnothing\right]+\left[\left(\mathbf{W}_{\mathrm{L}} / 386.4\right) \times\left(\mathbf{v} / \mathbf{t}_{\mathrm{acc}}\right)\right]+\mathbf{W}_{\mathrm{L}} \sin \varnothing+\mathbf{F}_{\text {applied }}$

THRUST $\left.=[(\quad) \times() \times(\quad)]+\left[\left(\begin{array}{ll}1386.4\end{array}\right) \times\left(\begin{array}{ll}1\end{array}\right)\right]+[())\right]+(\quad)$
THRUST = $\quad]+[(\quad) x(\quad)]+[\quad+()$
\qquad lbf.

Calculate the thrust for each segment of the move profile. Use those values in calculations below. Use the units from the above definitions.

Cubic Mean Load Calculations

Move Profiles may have more or less than four components. Adjust your calculations accordingly.

Torque Calculations

Terms and (units)$\lambda=$ Torque, lb-in ($\mathrm{N}-\mathrm{m}$)....	
F	= Applied Load, non inertial, lbf (N).
S	= Screw lead, in (m)...
η	= Screw or ratio efficiency ($\sim 85 \%$ for roller screws) ..
g	$=$ Gravitational constant, $386 \mathrm{in} / \mathrm{s} 2(9.8 \mathrm{~m} / \mathrm{s} 2)$
a	= Acceleration of motor, rad/s2.
R	= Belt or reducer ratio.
T_{L}	$=$ Torque at driven load, Ilf-in ($\mathrm{N}-\mathrm{m}$)
V_{L}	$=$ Linear velocity of load, in/sec ($\mathrm{m} / \mathrm{sec}$)
ω_{L}	= Angular velocity of load, rad/sec.
ω_{m}	= Angular velocity of motor, rad/sec.
m	= Mass of the applied load, Ibm (kg)..
$J_{\text {R }}$	$=$ Reflected Inertia due to ratio, lb-in-s2 ($\mathrm{N}-\mathrm{m}-\mathrm{s} 2)$.
J_{S}	= Reflected Inertia due to screw, Ib-in-s2 ($\mathrm{N}-\mathrm{m}-\mathrm{s} 2$)
J_{L}	= Reflected Inertia due to load, Ib-in-s2($\mathrm{N}-\mathrm{m}-\mathrm{s} 2)$.
$\mathrm{J}_{\mathrm{M}}=$ Motor armature inertia, lb-in-s2 ($\left.\mathrm{N}-\mathrm{m}-\mathrm{s} 2\right)$.	
K	$=$ Motor Torque constant, lb -in/amp (N -m/amp).
	the $G S$ Series J_{S} and J_{M} are one value from the GS Specificaions.

* For the GS Series J_{S} and J_{M} are one value from the GS Specifications.

Torque Equations

Torque From Calculated Thrust.

Torque Due To Load, Rotary.

Belt and pulley drive: $\lambda=T_{L} / R \eta$ lbf-in ($N-m$)
Gear or gear reducer drive: $\lambda=T_{L} / R_{\eta} \operatorname{lbf-in}(N-m)$
Torque During Acceleration due to screw, motor, load and reduction, linear or rotary.
$\mathrm{I}=\left(\mathbf{J}_{\mathrm{m}}+\left(\mathbf{J}_{\mathrm{S}}+\mathbf{J}_{\mathrm{L}}\right) / \mathbf{R}^{2}\right) \mathrm{a} \quad \mathrm{lb}$-in $(\mathrm{N}-\mathrm{m})=[($
$)+(+\quad) /($
)] () = \qquad

Total Torque $=$ Torque from calculated Thrust + Torque due to motor, screw and load

$\left(\begin{array}{ll}()+(&)+(\end{array}\right)=$		
Motor Current $=\lambda / \mathbf{K}_{\mathrm{t}}=($	$) /($	$)=$

Exlar Application Worksheet

Exlar Application Worksheet

FAX to:
Exlar Automation
(952) 368-4877

Attn: Applications Engineering

Date: \qquad Company Name: \qquad

Address: \qquad

City: \qquad State: \qquad Zip Code: \qquad

Phone: \qquad Fax: \qquad

Contact: \qquad Title: \qquad

Sketch/Describe Application

Exlar Application Worksheet

Exlar Application Worksheet

Date: \qquad Contact: \qquad Company: \qquad

Stroke \& Speed Requirements

Maximum Stroke Needed..	inches (mm), revsinches (mm), revs
Index Stroke Length .	
Index Time..........	sec
Max Speed Requirements....	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$, revs/sec
Min Speed Requirements..	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$, revs/sec
Required Positional Accuracy...	inches (mm), arc min
Load \& Life Requirements	
Gravitational Load	$\mathrm{lb}(\mathrm{N})$
External Applied Load..	lbf (N)
Inertial Load.	lbf (N)
Friction Load.	lbf (N)
Rotary Inertial Load	\|bf-in-sec ${ }^{2}$ ($\mathrm{Kg}-\mathrm{m}^{2}$)
or rotary mass, radius of gyr....................................	in (mm)
Side Load (rot. or lin. actuator)..	$\mathrm{lb}(\mathrm{N})$
Force Direction ___ Extend	___ Both
Actuator Orientation ___ Vertical Up	__ Horizontal
___ Fixed Angle	
___Changing Angle	
Cycling Rate ... _ $^{\text {. }}$ Cycles/min/hr/day	
Operating Hours per Day ...	Hours
Life Requirement	Cycles/hrrinches/mm

\qquad Cycles/hr/inches/mm

Configuration

Reference Tables

Rotary Inertia To obtain a conversion from A to B, multiply by the value in the table.

B	$\mathrm{Kg}-\mathrm{m}^{2}$	$\mathrm{Kg}-\mathrm{cm}^{2}$	$\mathrm{g}-\mathrm{cm}^{2}$	kgf-m-s ${ }^{2}$	kgf-cm-s ${ }^{2}$	gf -cm-s ${ }^{2}$	$o z-i{ }^{2}$	ozf-in-s ${ }^{2}$	lb-in ${ }^{2}$	Ibf-in-s ${ }^{\text {2 }}$	lb-ft ${ }^{2}$	lbf-ft-s ${ }^{2}$
A												
$\mathrm{Kg}-\mathrm{m}^{2}$	1	10^{4}	10^{7}	0.10192	10.1972	1.01972×10^{4}	5.46745×10^{4}	1.41612×10^{2}	3.41716×10^{3}	8.850732	23.73025	0.73756
$\mathrm{Kg}-\mathrm{cm}^{2}$	10^{-4}	1	10^{3}	1.01972×10^{5}	1.01972×10^{3}	1.01972	5.46745	1.41612×10^{-2}	0.341716	8.85073×10^{-4}	2.37303×10^{-3}	7.37561×10^{-5}
$\mathrm{g}-\mathrm{cm}^{2}$	10^{-7}	10^{-3}	1	1.01972×10^{-8}	1.01972×10^{-6}	1.01972×10^{-3}	5.46745×10^{-3}	1.41612×10^{-5}	3.41716×10^{-4}	8.85073×10^{-7}	2.37303×10^{-6}	7.37561×10^{-8}
kgf-m-s ${ }^{2}$	9.80665	9.80665×10^{4}	9.80665×10^{7}	1	10^{2}	10^{5}	5.36174×10^{5}	1.388674×10^{3}	3.35109×10^{4}	86.79606	2.32714×10^{2}	7.23300
kgf-cm-s ${ }^{2}$	9.80665×10^{-2}	9.80665×10^{2}	9.80665×10^{5}	10^{-2}	1	10^{5}	5.36174×10^{3}	13.8874	3.35109×10^{-2}	0.86796	2.32714	7.23300×10^{-2}
gf-cm-s ${ }^{2}$	$9.80665 \times 10-5$	0.980665	9.80665×10^{2}	10^{-5}	10^{-3}	1	5.36174	1.38874×10^{-2}	0.335109	8.67961×10^{-4}	2.32714×10^{-3}	7.23300×10^{-5}
Oz-in ${ }^{2}$	1.82901×10^{-5}	0.182901	1.82901×10^{2}	1.86505×10^{-6}	1.86505×10^{-4}	0.186506	1	2.59008×10^{-3}	6.25×10^{-2}	1.61880×10^{-4}	4.34028×10^{-4}	1.34900×10^{-3}
0z-in-s ${ }^{2}$	7.06154×10^{-3}	70.6154	7.06154×10^{4}	7.20077×10^{4}	7.20077×10^{-2}	72.0077	3.86089×10^{2}	1	24.13045	6.25×10^{-2}	0.167573	5.20833×10^{-4}
$\mathrm{lb}-\mathrm{in}^{2}$	2.92641×10^{-4}	2.92641	2.92641×10^{3}	2.98411×10^{5}	2.98411×10^{3}	2.98411	16	4.14414×10^{2}	1	2.59008×10^{-3}	6.94444×10^{-3}	2.15840×10^{-4}
lbf-in-s ${ }^{2}$	0.112985	1.129×10^{3}	1.12985×10^{6}	1.15213×10^{2}	1.15213	1.51213×10^{3}	6.1774×10^{3}	16	3.86088×10^{2}	1	2681175	8.3333×10^{-2}
$\mathrm{lbf}-\mathrm{ft}^{2}$	4.21403×10^{-2}	4.21403×10^{2}	4.21403×10^{5}	4.29711×10^{3}	0.429711	4.297114	2.304×10^{3}	5.96755	144	0.372971	1	3.10809×10^{-2}
lbf-ft-s ${ }^{2}$	1.35583	1.35582×10^{4}	1.35582×10^{7}	0.138255	13.82551	1.38255×10^{4}	7.41289×10^{4}	192	4.63306×10^{3}	12	32.17400	1

Torque to obtain a conversion from A to B , multiply A by the value in the table.

B	N -m	$\mathrm{N}-\mathrm{cm}$	dyn-cm	Kg-m	$\mathrm{Kg}-\mathrm{cm}$	g -cm	oz-in	$\mathrm{ft}-\mathrm{lb}$	in-lb
A									
N-m	1	10^{-2}	10^{7}	0.109716	10.19716	1.019716×10^{4}	141.6199	0.737562	8.85074
$\mathrm{N}-\mathrm{cm}$	102	1	10^{5}	1.019716×10^{3}	0.1019716	1.019716×10^{2}	1.41612	7.37562×10^{-3}	8.85074×10^{-2}
dyn-cm	10-7	10^{-5}	1	1.019716×10^{-8}	1.019716×10^{-6}	1.019716×10^{-3}	1.41612×10^{-5}	7.2562×10^{-8}	8.85074×10^{-7}
Kg-m	9.80665	980665×10^{2}	9.80665×10^{7}	1	10^{2}	10^{5}	1.38874×10^{3}	7.23301	86.79624
$\mathrm{Kg}-\mathrm{cm}$	9.80665×10-2	9.80665	9.80665×10^{5}	10^{-2}	1	10^{3}	13.8874	7.23301×10^{-2}	0.86792
$\mathrm{g}-\mathrm{cm}$	$9.80665 \times 10-5$	9.80665×10^{-3}	9.80665×10^{2}	10^{-5}	10^{-3}	1	1.38874×10^{-2}	7.23301×10^{-5}	8.679624×10^{-4}
0z-in	$7.06155 \times 10-3$	0.706155	7.06155×10^{4}	7.20077×10^{-4}	7.20077×10^{-2}	72,077	1	5.20833×10^{-3}	6.250×10^{-2}
ft-lb	1.35582	1.35582×10^{2}	1.35582×10^{7}	0.1382548	13.82548	1.382548×10^{4}	192	1	12
in-lb	0.113	11.2985	1.12985×10^{6}	1.15212×10^{-2}	1.15212	1.15212×10^{3}	16	8.33333×10^{-2}	1

Common Material Densities

Material	oz/in	gm/cm
Aluminum (cast or hard drawn)	1.54	2.66
Brass (cast or rolled)	4.80	8.30
Bronze (cast)	4.72	8.17
Copper (cast or hard drawn)	5.15	8.91
Plastic	0.64	1.11
Steel (hot or cold rolled)	4.48	7.75
Wood (hard)	0.46	0.80
Wood (soft)	0.28	0.58

Coefficients of Sliding Friction

Materials in contact	$\boldsymbol{\mu}$
Steel on Steel (dry)	0.58
Steel on Steel (lubricated)	0.15
Aluminum on Steel	0.45
Copper on Steel	0.36
Brass on Steel	0.44
Plastic on Steel	0.20
Linear Bearings	0.001

Product Ambient Temperatures/P Ratings

Standard Ratings for Exlar Actuators

The standard IP rating for Exlar Actuators is IP54S or IP65S. Ingress protection is divided into two categories: solids and liquids.

For example, in IP65S the three digits following "IP" represent different forms of environmental influence:

- The first digit represents protection against ingress of solid objects.
- The second digit represents protection against ingress of liquids.
- The suffix digit represents the state of motion during operation.

Digit 1 - Ingress of Solid Objects

The IP rating system provides for 6 levels of protection against solids.

$\mathbf{1}$	Protected against solid objects over 50 mm e.g. hands, large tools.
$\mathbf{2}$	Protected against solid objects over 12.5 mm e.g. hands, large tools.
$\mathbf{3}$	Protected against solid objects over 2.5 mm e.g. large gauge wire, small tools.
$\mathbf{4}$	Protected against solid objects over 1.0 mm e.g. small gauge wire.
$\mathbf{5}$	Limited protection against dust ingress.
$\mathbf{6}$	Totally protected against dust ingress.

Digit $\mathbf{2}$ - Ingress of Liquids	
The IP rating system provides for 9 levels of protection against liquids.	
$\mathbf{1}$	Protected against vertically falling drops of water or condensation.
$\mathbf{2}$	Protected against falling drops of water, if the case is positioned up to 15 degrees from vertical.
$\mathbf{3}$	Protected against sprays of water from any direction, even if the case is positioned up to 60 degrees from vertical.
$\mathbf{4}$	Protected against splash water from any direction.
$\mathbf{5}$	Protected against low pressure water jets from any direction. Limited ingress permitted.
$\mathbf{6}$	Protected against high pressure water jets from any direction. Limited ingress permitted.
$\mathbf{7}$	Protected against short periods (30 minutes or less) of immersion in water of 1 m or less.
$\mathbf{8}$	Protected against long durations of immersion in water.
$\mathbf{9}$	Protected against high-pressure, high-temperature wash-downs.

Suffix

S Device standing still during operation

Notes

Return to table of contents

1. OFFER AND ACCEPTANCE: These terms and conditions constitute Seller's offer to Buyer and acceptance by Buyer and any resulting sale is expressly limited to and conditioned upon Seller's terms and conditions as set forth below. If Buyer objects to any of Seller's terms and conditions, such objections must be expressly stated and brought to the attention of Seller in a written document which is separate from any purchase order or other printed form of Buyer. Such objections, or the incorporation of any additional or different terms or conditions by Buyer into a resulting order shall constitute non-acceptance of these Terms and Conditions, releasing Seller from any obligation or liability hereunder and a proposal for different terms and conditions which shall be objected to by Seller unless expressly accepted in writing by an authorized representative of Seller. Acknowledgment copy, if any, shall not constitute acceptance by Seller of any additional or different terms or conditions, nor shall Seller's commencement of effort, in itself, be construed as acceptance of an order containing additional or different terms and conditions.
2. PRICES: Published prices and discount schedules are subject to change without notice. They are prepared for the purpose of furnishing general information and are not quotations or offers to sell on the part of the company.
3. TRADE TERMS: Shipment terms are FCA, shipping point (Exlar, Chanhassen, MN). FCA (Free Carrier) per Incoterms 2010 means the Seller delivers the goods, cleared for export into the custody of the first carrier named by the buyer at the named place, above. This term is suitable for all modes of transport, including carriage by air, rail, road, and containerized/multi-modal transport. Title of the merchandise transfers from Exlar Corporation to the Buyer when it is received from Exlar by the carrier. Where allowable, Exlar will arrange the transportation via the carrier specified by the Buyer. The Buyer is responsible for all costs associated with the shipment.
4. PAYMENT TERMS: Subject to approval of Buyer's credit, the full net amount of each invoice is due and payable in cash within thirty (30) days of shipment. No payment discounts are offered, and minor inadvertent administrative errors contained in an invoice are subject to correction and shall not constitute reason for untimely payment. If, in the judgment of the Seller, the financial credit of Buyer at any time does not justify continuance of production or shipment of any product(s) on the payment terms herein specified, Seller may require full or partial payment prior to completion of production or shipment, or may terminate any order, or any part thereof, then outstanding. Custom products and blanket orders are subject to payment terms: 30% due at time of order, 70% due net 30 days from shipment.
5. MINIMUM BILLING: Minimum billing will be $\$ 50.00$.
6. DELAYS: Exlar shall not be liable for any defaults, damages or delays in fulfilling any order caused by conditions beyond Seller's control, including but not limited to acts of God, strike, lockout, boycott, or other labor troubles, war, riot, flood, government regulations, or delays from Seller's subcontractors or suppliers in furnishing materials or supplies due to one or more of the foregoing clauses.
7. CANCELLATIONS: All cancelled orders for standard products are subject to order cancellation charges. The minimum cancellation charge will be 20% of the order total. Standard products, if unused may be returned in accordance with the current return policy. All returns are subject to prior approval by Exlar, and return charges may apply. No return credit for any product will be issued or authorized prior to evaluation of the product by Exlar. Custom product is not returnable. Orders for custom product are not cancelable.
8. QUANTITY PRICING AND BLANKET ORDER PRICING TERMS: Blanket order quantity pricing requires a complete delivery schedule for the volume being ordered, with all units scheduled to deliver within a 15 month period from the placement of the purchase order to the final scheduled shipment. Any requests to change the delivery schedule of a blanket order must be received in writing 60 days prior to the requested change. Failure to take delivery of the entire ordered volume will result in back charges equal to the difference in quantity price between the volume ordered and the volume received times the number of units received. A cancellation charge in accordance with the cancellation policy (item 7) will apply to any reduction in delivered volume from the original ordered quantity.

For orders receiving quantity discounts, but not as scheduled blanket orders, the same quantity pricing rules apply. Failure to take delivery of the entire quantity ordered will result in back charges equal to the difference in quantity price between the volume ordered and the volume received times the number of units received. Cancellation charges in accordance with the cancellation policy (item 7) will apply to any reduction in delivered volume from the original ordered quantity. For either blanket orders or quantity orders, in addition to any applicable cancellation charges, the customer is responsible for the value of any additional inventory allocated specifically to their order. Charges for this inventory will be invoiced in addition to cancellation charges, along with any back charges for quantity variance.
9. DESTINATION CONTROL STATEMENT: Exlar products, technology or software are exported from the United States in accordance with the Export Administration Regulations (EAR) or International Traffic in Arms Regulations (ITAR) as applicable. Diversion, transfer, transshipment or disposal contrary to U.S. law is prohibited.
10. EXPORT CONTROL AND SHIPMENT REGULATIONS: Purchaser agrees at all times to comply with all United States laws and regulations as well as International Trade Laws, as they may exist from time to time, regarding export licenses or the control or regulation of exportation or re-exportation of products or technical data sold or supplied to Distributor. Seller may terminate or suspend this order, without remedy, should the Purchaser become an entity identified on any US export denial listing. Products ordered may require authorization and/or validated export license from a U.S. government agency. Seller may terminate or suspend this order, without remedy, should a government agency approval be denied.
11. GOVERNING LAW AND VENUE: This order shall be governed by, and construed in accordance with the laws of the State of Minnesota, U.S.A. All disputes shall be resolved by a court of competent jurisdiction in the trial courts of Carver County, in the State of Minnesota.
12. ATTORNEY FEES: Reasonable attorney's fees and other expenses of litigation must be awarded to the prevailing party in an action in which a remedy is sought under this order.
13. NON-WAIVER: The failure by the Seller to require performance of any provision shall not affect the Seller's right to require performance at any time thereafter, nor shall a waiver of any breach or default of this Order constitute a waiver of any subsequent breach or default or a waiver of the provision itself.
14. MERGER AND INTEGRATION: These Terms and Conditions contain the entire agreement of the parties with respect to the subject matter of this order, and supersede all prior negotiations, agreements and understandings with respect thereto. Purchase orders may only be amended by a written document duly executed by buyer and seller.
15. INDEMNITY: Buyer agrees to indemnify, defend and hold harmless Exlar from any claims, loss or damages arising out of or related to Seller's compliance with Buyer's designs, specifications or instructions in the furnishing of products to Buyer, whether based on infringement of patents, copyrights, trademark or other right of others, breach of warranty, negligence, or strict liability or other tort.

WARRANTY AND LIMITATION OF LIABILITY: Products are warranted for two years from date of manufacture as determined by the serial number on the product label. Labels are generated and applied to the product at the time of shipment. The first and second digits are the year and the third and fourth digits represent the manufacturing week. Product repairs are warranted for 90 days from the date of the repair. The date of repair is recorded within the Exlar database and tracked by individual product serial number.

Exlar Corporation warrants its product(s) to the original purchaser and in the case of original equipment manufacturers, to their original customer to be free from defects in material and workmanship and to be made only in accordance with Exlar standard published catalog specifications for the product(s) as published at the time of purchase. Warranty or performance to any other specifications is not covered by this warranty unless otherwise agreed to in writing by Exlar and documented as part of any and all contracts, including but not limited to purchase orders, sales orders, order confirmations, purchase contracts and purchase agreements. In no event shall Exlar be liable or have any responsibility under such warranty if the product(s) has been improperly stored, installed, used or maintained, or if Buyer has permitted any unauthorized modifications, adjustments and/or repairs to such product(s). Seller's obligation hereunder is limited solely to repairing or replacing (at its opinion), at the factory any product(s), or parts thereof, which prove to Seller's satisfaction to be defective as a result of defective materials, or workmanship and within the period of time, in accordance with the Seller's stated product warranty (see Terms and Conditions above), provided, however, that written notice of claimed defects shall have been given to Exlar within thirty (30) days from the date of any such defect is first discovered. The product(s) claimed to be defective must be returned to Exlar, transportation prepaid by Buyer, with written specification of the claimed defect. Evidence acceptable to Exlar must be furnished that the claimed defects were not caused by misuse, abuse, or neglect by anyone other than Exlar.

Components such as seals, wipers, bearings, brakes, bushings, gears, splines, and roller screw parts are considered wear parts and must be inspected and serviced on a regular basis. Any damage caused by failure to properly lubricate Exlar products and/or to replace wear parts at appropriate times, is not covered by this warranty. Any damage due to excessive loading is not covered by this warranty.

The use of products or components under load such that they reach the end of their expected life is a normal characteristic of the application of mechanical products. Reaching the end of a product's expected life does not indicate any defect in material or workmanship and is not covered by this warranty.

Costs for shipment of units returned to the factory for warranty repairs are the responsibility of the owner of the product. Exlar will return ship all warranty repairs or replacements via UPS Ground at no cost to the customer.

For international customers, Exlar will return ship warranty repairs or replacements via UPS Expedited Service and cover the associated shipping costs. Any VAT or local country taxes are the responsibility of the owner of the product.

The foregoing warranty is in lieu of all other warranties (except as Title), whether expressed or implied, including without limitation, any warranty of merchantability, or of fitness for any particular purpose, other than as expressly set forth and to the extent specified herein, and is in lieu of all other obligations or liabilities on the part of Exlar

Seller's maximum liability with respect to these terms and conditions and any resulting sale, arising from any cause whatsoever, including without limitation, breach of contract or negligence, shall not exceed the price specified of the product(s) giving rise to the claim, and in no event shall Exlar be liable under this warranty otherwise for special, incidental or consequential damages, whether similar or dissimilar, of any nature arising or resulting from the purchase, installation, removal, repair, operation, use or breakdown of the product(s) or any other cause whatsoever, including negligence.

The foregoing warranty shall also apply to products or parts which have been repaired or replaced pursuant to such warranty, and within the period of time, in accordance with Seller's stated warranty.

NO PERSON INCLUDING ANY AGENT OR REPRESENTATIVE OF EXLAR CORPORATION IS AUTHORIZED TO MAKE ANY REPRESENTATION OR WARRANTY ON BEHALF OF EXLAR CONCERNING ANY PRODUCTS MANUFACTURED BY EXLAR, EXCEPT TO REFER PURCHASERS TO THIS WARRANTY.

USA \& CANADA

Exlar Automation
18400 West 77th Street
Chanhassen, MN 55317
Phone: 855-620-6200 (US \& Canada)
Fax: 952-368-4877

EUROPE

Exlar Europe GmbH
Schleißheimer Str., 91a
Garching bei München D-85748
Germany
Phone: +49 06142-79335-0

ASIA

Exlar Asia Pacific
1007 Pine City Hotel
8 Dong An Road, Xuhui District
Shanghai 200032 China
Phone: +86 021-6495-7868

Distributed by:

www.exlar.com

Exlar® actuators are a brand of Curtiss-Wright, Sensors and Controls Division.

[^0]: *Please note that stroke mm are nominal dimensions. Specifications subject to change without notice. **Inertia +/-5\%

[^1]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^2]: * For brake option add $0.9 \mathrm{lb}(0.408 \mathrm{~kg})$ mass.

[^3]: * Ratings based on $25^{\circ} \mathrm{C}$ conditions.
 *** T2X peak force for 0.1 inch lead is $5400 \mathrm{lbf}(24020 \mathrm{~N})$.

[^4]: *Test data derived using NEMA recommended aluminum heatsink $10 " \times 10 " \times 3 / 8^{\prime \prime}$ at $40^{\circ} \mathrm{C}$ ambient.

[^5]: *Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient.

[^6]: * Add 1.61 inches to dimensions " A ", " B " and " D " if ordering a brake. Add 1.2 inches to dimensions " A ", " C " and " D " and dimension if ordering a splined \triangle main rod ${ }^{* *}$ Add 2 in (50.8 mm) to dimension "E" if ordering protective bellows.

[^7]: * Add 1.61 inches to dimensions " A ", " B " and " D " if ordering a brake. Add 1.78 inches to dimensions " A ", " C " and " D " and dimension if ordering a splined Δ main rod.
 **Add 2 in (50.8 mm) to dimension " E " if ordering protective bellows.

[^8]: * Add 2.33 inches to dimensions " A ", " B " and " D " if ordering a brake. Add 1.77 inches to dimensions "A", "C" and "D" and
 dimension if ordering a splined Δ main rod.
 **Add 2 in (50.8 mm) to dimension " E " if ordering protective bellows.

[^9]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^10]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^11]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^12]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^13]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^14]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^15]: For amplifiers using peak sinusoidal ratings, multiply RMS sinusoidal Kt by 0.707 and current by 1.414 .
 *Refer to performance specifications on page 7 for availability of 3 stack stator by stroke/lead combination. Test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 3 / 8^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient.

[^16]: Specifications subject to change without notice.

[^17]: Test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 1 / 4^{\prime \prime}$ for GSX20 and 10 " $\times 10^{\prime \prime} \times 3 / 8$ " for GSX30. Testing ambient temperature $25^{\circ} \mathrm{C}$.

[^18]: 1. Two mounting styles shown
 2. With flange mount, dimension A is equivalent to top two drawings
[^19]: * Add armature inertia to gearing inertia for total SLG system inertia

 Test data derived using NEMA recommended aluminum heatsink 10 " $\times 10^{\prime \prime} \times 3 / 8^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient

[^20]: *Add armature inertia to gearing inertia for total SLG system inertia
 Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient

[^21]: Face plate edge is not intended for alignment of shaft (use pilot)
 Applications with >20A rms will require the larger terminal box.
 Drawings subject to change. Consult Exlar for certified drawings.

